Глава II. Векторная алгебра. Элементы теории линейных пространств и линейных операторов Раздел математики, в котором изучаются свойства операций над векторами,

Презентация:



Advertisements
Похожие презентации
Свойства линейных операций над матрицами Свойства линейных операций над векторами.
Advertisements

Глава II. Векторная алгебра. Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление.
Элементы векторной алгебры Кафедра высшей математики ТПУ Лектор: доцент Тарбокова Татьяна В асильевна.
Векторная алгебра Разложение вектора по базису Системы координат Декартова прямоугольная система координат Скалярное произведение векторов Свойства скалярного.
Учебное пособие по дисциплине «Элементы высшей математики» Преподаватель: Французова Г.Н.
Векторы Величины, которые полностью определяются своим численным значением, называются скалярными: площадь, длина, объём, температура, работа, масса. Другие.
Тема 2 «Скалярные и векторные величины» Кафедра математики и моделирования Старший преподаватель Г.В. Аверкова Курс «Высшая математика» Линейные операции.
Векторы Величины, которые полностью определяются своим численным значением, называются скалярными: площадь, длина, объём, температура, работа, масса. Другие.
Элементы векторной алгебры.. Определение Совокупность всех направленных отрезков, для которых введены операции: - сравнения - сложения - умножения на.
В е к т о р ы. О с н о в н ы е п о н я т и я.. Вектором называется направленный отрезок. Обозначают векторы символами или, где А- начало, а B-конец направленного.
Элементы векторной алгебры. Лекции 5-7. Вектором называется направленный отрезок. Обозначают векторы символами или, где А- начало, а B-конец направленного.
Тема 8. «Векторы на плоскости и в пространстве» Основные понятия: 1.Определение вектора, основные определения и линейные операции над векторами 2.Скалярное.
Математика Лекция 3 (продолжение) Разработчик Гергет О.М.
ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ Лекция 3. План лекции: Понятие вектора. Действия над векторами. Линейно зависимые и линейно независимые векторы. Размерность.
Векторная алгебра. Основные понятия.. Декартовые прямоугольные координаты на плоскости. Координатами точки на плоскости называются числа, определяющие.
Лекция 2 для студентов 1 курса, обучающихся по специальности – Клиническая психология к.п.н., доцент Шилина Н.Г. Красноярск, 2014 Тема: Элементы.
Линейная алгебра и аналитическая геометрия Лектор Ефремова О.Н г. Тема: Простейшие задачи векторной алгебры. Скалярное произведение векторов.
Презентацию подготовил ученик 9 класса «В» Азимов Марат.
Векторы Вектор - направленный отрезок, т.е. отрезок, у которого указаны начало и конец.
1 Линейные пространства Базис линейного пространства Подпространства линейного пространства Линейные операторы Собственные векторы и собственные значения.
Транксрипт:

Глава II. Векторная алгебра. Элементы теории линейных пространств и линейных операторов Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление подразделяют на векторную алгебру и векторный анализ. В векторной алгебре изучаются линейные операции над свободными векторами (сложение векторов и умножение вектора на число) и различные произведения векторов (скалярное, псевдоскалярное, векторное, смешанное и двойное векторное). В векторном анализе изучают векторы, являющиеся функциями одного или нескольких скалярных аргументов.

§ 6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов ОПРЕДЕЛЕНИЕ. Вектором называется направленный отрезок (т.е. отрезок, у которого одна из ограничивающих его точек принимается за начало, а вторая – за конец).

Расстояние от начала вектора до его конца называется длиной (или модулем) вектора. Вектор, длина которого равна единице, называется единичным. Вектор, начало и конец которого совпадают, называется нулевым. Нулевой вектор не имеет определенного направления и имеет длину, равную нулю. Векторы, лежащие на одной или параллельных прямых, называются коллинеарными (параллельными).

2. Линейные операции на множестве векторов 1) Умножение на число; 2) Сложение векторов

СВОЙСТВА ЛИНЕЙНЫХ ОПЕРАЦИЙ НАД ВЕКТОРАМИ

§ 7. Понятие линейного пространства 1. Определение и примеры Пусть L – некоторое множество, элементы которого можно складывать и умножать на числа из F (где F – множество рациональных, действительных или комплексных чисел). ОПРЕДЕЛЕНИЕ 1. Множество L называется линейным пространством над F если для любых элементов a,b,c L и для любых чисел, F выполняются условия: 1. a+b=b+a (коммутативность сложения элементов из L); 2. (a+b)+c=a+(b+c) (ассоциативность сложения элементов из L); 3. Во множестве L существует такой элемент o, что a+o=a. Элемент o называют нулевым элементом множества L; 4. Для любого элемента a L элемент –a L такой, что a+(–a)=o. Элемент –a называют противоположным к a; 5. ( a)=( )a (ассоциативность относительно умножения чисел);

6. ( + )a= a+ a (дистрибутивность умножения на элемент из L относительно сложения чисел); 7. (a+b)= a+ b (дистрибутивность умножения на число относительно сложения элементов из L); 8. 1a=a. Линейное пространство над называют еще вещественным (действительными) линейным пространством, а над – комплексным. ЛЕММА 2. Пусть L – линейное пространство над F. Тогда для любых элементов a,b L и любых чисел, F справедливы следующие утверждения: 1) 0·a = o, ·o = o; 2) (– ) · a = ·(–a) = – a, (– ) ·(–a) = a; 3) ·(a–b) = a – b, ( – ) · a = a – a. Наряду с термином «линейное пространство» используется также термин «векторное пространство», а элементы линейного пространства принято называть векторами.

2. Подпространства линейных пространств Пусть L – линейное пространство над F, L 1 – непустое подмножество в L. ОПРЕДЕЛЕНИЕ. Говорят, что L 1 является подпространством линейного пространства L (или линейным подпространством), если оно само образует линейное пространство относительно операций, определенных на L. Если L 1 является подпространством линейного пространства L, то пишут: L 1 L ТЕОРЕМА 3 (критерий подпространства). Пусть L – линейное пространство над F, L 1 – непустое подмножество в L. L 1 является подпространством линейного пространства L тогда и только тогда, когда для любых элементов a,b L 1 и любого F выполняются условия: 1) a – b L 1 ; 2) ·a L 1.