Простые числа.

Презентация:



Advertisements
Похожие презентации
Стеценко Олеся 6 «А». Одной из самых больших загадок математики является расположение простых чисел в ряду всех натуральных чисел. Иногда два простых.
Advertisements

ПРИЗНАКИ ДЕЛИМОСТИ 8 КЛАСС. ПРИЗНАКИ ДЕЛИМОСТИ НА: 2 Для того чтобы натуральное число делилось на 2, необходимо и достаточно, чтобы последняя цифра числа.
§5. Некоторые теоретико-числовые приложения комбинаторики Определение 1. Натуральное число называется простым, если оно имеет ровно два разных делителя:
Исследовательская работа на тему: «ПРИЗНАКИ ДЕЛИМОСТИ НАТУРАЛЬНЫХ ЧИСЕЛ».
Выполнила: Пенкина Светлана Владимировна Негосударственное образовательное учреждение среднего образования « Колледж Экономики и Права »
Простые числа. Ефимова Марина, ученица 7 класса МОУ «Новошимкусская СОШ Яльчикского района Чувашской Республики» Руководитель учитель математики МОУ «Новошимкусская.
.:Делимость и Остатки:. Простые и составные числа. Основная теорема арифметики. Взаимно простые числа. НОД. НОК. Алгоритм Евклида. Сумма двух натуральных.
Цель работы: мне интересно было выяснить, а существует ли наибольшее простое число? Хочу напомнить одноклассникам и просто любознательным: -натуральное.
«Простые числа остаются существами, всегда готовыми ускользнуть от исследователя» Вейль Г.
ТЕМЫ ДЛЯ ОБСУЖДЕНИЯ: 1.Делители числа 2.Простые и составные числа 3.Наибольший общий делитель 4.Кратные числа 5.Наименьшее общее кратное.
НАТУРАЛЬНЫЕ ЧИСЛА. РАЦИОНАЛЬНЫЕ ЧИСЛА. 8 КЛАСС. ПРОСТЫЕ И СОСТАВНЫЕ ЧИСЛА Определение. Если натуральное число имеет только два натуральных делителя –
МОУ "Булзинская СОШ" Белова Е.В. Простые и составные числа.
Выполнила: ученица 7-го класса Третьякова Люда. План работы: Определения простого числа Почему я выбрала эту тему Цели и задачи работы Теоретическая часть:
Презентация на тему : « Натуральные и целые числа » Выполнили : Богатова Екатерина Гребельник Ксения Купоросова Ирина Подзолко Анастасия.
Многочлены. Решение олимпиадных задач по теме «Многочлены» Выполнила ученица 10 класса Б МБОУ лицея 1 Пщегорская Наталья.
Свойства делимости Подготовила ученица 5,, б класса Маркина Мария.
Решето Эратосфена Выполнил ученик 5 класса Г Игнатов Даниил Воронеж 2015.
Решето Эратосфена
« Природа формулирует свои законы языком математики!» Галилео Галилей.
Тема урока: « Простые и составные числа. Совершенные числа. » Автор : учитель математики Потабенко Наталья Игоревна Класс : 6 Школа : 515 ЮАО г.Москвы.
Транксрипт:

Простые

Каждое натуральное число, большее единицы делится по крайней мере на два числа: на 1 и на само себя. Если ни на какое другое натуральное число оно нацело делится, то называется простым, а если у него имеются ещё какие-то целые делители, то составным. Единичка же не считается ни простым числом, ни составным.

Небольшую «коллекцию» простых чисел нам поможет составить старинный способ, придуманный ещё в 3 веке до нашей эры Эратосфеном Киренским, хранителем знаменитой Александрийской библиотеки

Выпишем несколько подряд идущих чисел, начиная с 2.Двойку отберём в свою коллекцию, а остальные числа, кратные 2,зачеркнём. Ближайшим не зачёркнутым числом будет 3.Возьмём в коллекцию и его, а все остальные числа кратные 3, зачеркнём. При этом окажется, что некоторые числа уже были вычеркнуты раньше, как, например, 6, 12 и другие. Следующее наименьшее не зачёркнутое число-это 5.Берём пятёрку, а остальные числа, кратные 5, зачёркиваем. Повторяя эту процедуру снова и снова, мы в конце концов добьёмся того, что не зачёркнутыми останутся одни лишь простые числа - они словно просеялись сквозь решето. Поэтому такой способ и получил название «решето Эратосфена».

Можно ли, вторя поэту, сказать, что простых чисел столько «сколько звёзд на небе, сколько рыб в воде»? Ответ находится в девятой книге знаменито сочинения Евклида Начала»- нетленного памятника Древнего мира.Двадцатая теорема в этой книге утверждает: «Первых простых чисел существует больше любого указанного числа их».

Вот доказательство этой теоремы. Предположим,что существует некое наибольшее простое число p. Тогда перемножим все простые числа, начиная с 2 и кончая p, и увеличим полученное произведение на единицу: 2*3*5*7*…..P+1=М. Если число М составное, то оно должно иметь по крайней мере 1 простой делитель. Но этим делителем не может быть ни одно из простых чисел 2, 3, 5, 7…P, поскольку при делении М на каждое из, них получаем в остатке 1. Следовательно, число М либо само простое, либо делится на простое число большее P. Значит предположение, что существует наибольшее простое число P, неверно и множество простых чисел бесконечно.

Первую известную нам таблицу простых чисел составил итальянский математик Пьетро Антонио Катальди в 1603 г. Она охватывала все простые число от 2 до 743.

В 1770 г. немецкий математик Иоганн Генрих Ламберт опубликовал таблицу наименьших делителей всех чисел, не превосходящих и не делящих на 2, 3, 5. Вложив в этот труд поистине колоссальные усилия, Ламберт гарантировал бессмертие тому, кто доведёт таблицу делителей до миллиона. На его призыв откликнулись многие вычислители.

К середине XIX века уже были составлены таблицы наименьших делителей не только первого миллиона, но и следующих, вплоть до девятого. В это же время в прессе появилась сообщения, которые представлялись абсолютно фантастически: в Венскую академию поступило 7 больших томов рукописных таблиц великий канон делителей всех чисел, которые делятся на 2, 3 и 5, и простых чисел между ними до Автором этого труда был Якуб Филипп Кулик, профессор высшей математики Пражского университета.

У охотников за числами больше всех популярный Мерсенна. Они названы в честь французского учёного Марена Марсенна, сыгравшего в XVIII в. Видную роль становление европейской науки.

Некоторые представлении о распределении простых чисел имели уже древние греки. Из доказательства Евклида следует, например, что они не собраны вместе, а разбросаны по всей числовой оси. Но как часто?

В 1845 г. французский математик Жозедо Бертран, исследуя таблицу простых чисел в промежутке от 1 до обнаружил, что между числами n история 2n – 2где n >3, содержится по крайней мере одно простое число. Впоследствии это свойство получило название поступлата Бертрана, хотя самому Бертрану обосновать его так история неудалось.

Спасибо за внимание! С уважением Лагойская Элеонора,5 класс, Севастополь