Решение квадратных уравнений Алгебра 8 класс Фадеева Светлана Виссарионовна МОУ Кожважская основная общеобразовательная школа
Квадратные уравнения Определение Классификация Способы решения Биквадратные уравнения Биография Виета
Определение Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где a, b, с – заданные числа, a0, x – неизвестное. Числа a, b, c носят следующие названия: a - первый коэффициент, b - второй коэффициент, с - свободный член. Квадратные уравнения Квадратные уравнения Дальше Дальше
Классификация Полные: ax 2 +bx+c=0, где коэффициенты b и с отличны от нуля ; Решение Решение Неполные: ax 2 +bx=0, ax 2 +c=0 или ax 2 =0 т.е. хотя бы один из коэффициентов b или c равен нулю; Решение Решение Приведенные: x 2 +bx+c=0, т.е. уравнение, первый коэффициент которого равен единице (а=1). Решение Решение Квадратные уравненияСпособы решения
Решение полных квадратных уравнений Решение неполных квадратных уравнений Решение приведенного квадратного уравнения Решение приведенного квадратного уравнения Решение биквадратных уравнений Квадратные уравнения
Решение полных квадратных уравнений По формуле корней квадратного уравнения: ax 2 +bx+c=0,, где D=b 2 -4ac Выражение b 2 -4ac называется дискриминантом квадратного уравнения При D>0 - 2 корня, при D=0 - 1 корень, при D
Решение неполных квадратных уравнений 1.ax 2 +bx=0 x(ax+b)=0 x 1 =0, ax+b=0 ax=-b x 2 =-b/a Квадратные уравнения 2. ax 2 +c=0 ax 2 =-c x 2 =-c/a 3.ax 2 =0 x 2 =0 x 1.2 =0 Способы решения
Решение приведенного квадратного уравнения 1.По формуле корней квадратного уравнения 2. Метод выделения полного квадрата Пример. x 2 +2x-3=0 x 2 +2x=3, x 2 +2x+1=3+1 (x+1) 2 =4 x+1=2 или x+1=-2 x 1 =1, x 2 =-3 Квадратные уравнения 3. По теореме обратной теореме Виета x 2 +bx+c=0 х 1 +х 2 =-b, x 1 ×x 2 =c. Биография Виета Способы решения
Решение биквадратного уравнения Определение: уравнение вида ax 4 +bx 2 +c=0 называют биквадратным. Пример. 9x 4 +5x 2 -4=0 Обозначим x 2 =t. Тогда данное уравнение примет вид 9t 2 +5t-4=0 Откуда t 1 =9/4, t 2 =-1. Уравнение x 2 =4/9 имеет корни x 1 =2/3, x 2 =-2/3, а уравнение x 2 =-1 не имеет действительных корней. Квадратные уравненияСпособы решения
Биография Виета Франсуа Виет родился в 1540 году в городе Фонтене ле-Конт провинции Пуату. Получив юридическое образование, он в 19 лет успешно занимался адвокатской практикой в родном городе. Как адвокат Виет пользовался у населения авторитетом и уважением. Он был широко образованным человеком. В 1571 году Виет переехал в Париж и там познакомился с математиком Пьером Рамусом. Благодаря своему таланту и, отчасти, благодаря браку своей бывшей ученицы с принцем де Роганом, Виет сделал блестящую карьеру и стал советником Генриха III, а после его смерти - Генриха IV. В последние годы жизни Виет занимал важные посты при дворе короля Франции. Умер он в Париже в самом начале семнадцатого столетия. Есть подозрения, что он был убит. Квадратные уравненияСпособы решения