Теорема Гаусса. ΔΦ = EΔS cos α = E n ΔS Φ - поток вектора напряженности электрического поля.

Презентация:



Advertisements
Похожие презентации
Теорема Гаусса. Поток напряженности электрического поля Введем новую физическую величину, характеризующую электрическое поле – поток Φ вектора напряженности.
Advertisements

Теорема Гаусса. Гаусс Карл Фридрих (1777 – 1855) немецкий математик, астроном и физик. Исследования посвящены многим разделам физики. В 1832 г. создал.
Ранее отмечалось, что величина вектора напряженности электрического поля равна количеству силовых линий, пронизывающих перпендикулярную к ним единичную.
Теорема Остроградского- Гаусса Силовые линии. Поток вектора напряженности. Теорема Остроградского-Гаусса.
Графическое изображение электрического поля. Силовые линии напряженности электрического поля.
ТЕОРЕМА ГАУССА ДЛЯ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ В ВАКУУМЕ Поток вектора напряженности электростатического поля.
Теорема Гаусса Лектор доцент А.П. Чернышев Весна 2011 г.
ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В ВАКУУМЕ. 1. Электромагнитное поле. Электрические заряды. Закон сохранения заряда. Электромагнитное поле является одной из форм материи.
Тема: Основные понятия и законы электростатики 1. Электродинамика, электрические заряды, закон сохранения электрических зарядов 2. Закон Кулона 3. Электростатическое.
1 ТЕМА 2. Методы расчета магнитного поля. П.1. Принцип суперпозиции магнитных полей. Магнитное поле прямого провода.П.1. Принцип суперпозиции магнитных.
ТЕОРЕМА О ЦИРКУЛЯЦИИ ВЕКТОРА ТЕОРЕМА ОСТРОГРАДСКОГО - ГАУССА Магнитное поле проводников с токами.
Лекция 12 Электростатическое поле. Электрическое поле вокруг бесконечно длинной прямой равномерно заряженной нити линейная плотность заряда (Кл/м).
ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ Лекция 9 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В ВАКУУМЕ План лекции 1. Закон Кулона. 2. Электрический заряд. Носитель заряда. Элементарный электрический.
Закон полного тока Аналогичен закону Гаусса в электростатике.
Закон полного тока Аналогичен закону Гаусса в электростатике.
Электростатика. Электризация трением Перераспределение зарядов.
Лекция 2. ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ В ВАКУУМЕ 2.1. Электростатическое поле. Напряженность поля 2.2. Сложение электростатических полей. Принцип суперпозиции.
ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ Лекция 9 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В ВАКУУМЕ План лекции 1. Закон Кулона. 2. Электрический заряд. Носитель заряда. Элементарный электрический.
Закон сохранения электрического заряда Закон Кулона Принцип суперпозиции полей Электростатическое поле Теорема Гаусса Применение теоремы Гаусса Потенциал.
1 Теорема Гаусса (закон Гаусса) один из основных законов электродинамики, входит в систему уравнений Максвелла. Выражает связь (а именно равенство с точностью.
Транксрипт:

Теорема Гаусса

ΔΦ = EΔS cos α = E n ΔS Φ - поток вектора напряженности электрического поля.

Рассмотрим теперь некоторую произвольную замкнутую поверхность S. Если разбить эту поверхность на малые площадки ΔS i, определить элементарные потоки поля через эти малые площадки, а затем их просуммировать, то в результате мы получим поток Φ вектора через замкнутую поверхность S В случае замкнутой поверхности всегда выбирается внешняя нормаль.

Теорема Гаусса утверждает: Поток вектора напряженности электростатического поля через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε 0.

Используя теорему Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля вокруг заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией и общую структуру поля можно заранее угадать 1.задача о вычислении поля тонкостенного полого однородно заряженного длинного цилиндра радиуса R. Эта задача имеет осевую симметрию. Из соображений симметрии, электрическое поле должно быть направлено по радиусу. Поэтому для применения теоремы Гаусса целесообразно выбрать замкнутую поверхность S в виде соосного цилиндра некоторого радиуса r и длины l, закрытого с обоих торцов

При r R весь поток вектора напряженности будет проходить через боковую поверхность цилиндра, площадь которой равна 2πrl, так как поток через оба основания равен нулю. Применение теоремы Гаусса дает: где τ – заряд единицы длины цилиндра. Отсюда

2.определение поля равномерно заряженной плоскости В этом случае гауссову поверхность S целесообразно выбрать в виде цилиндра некоторой длины, закрытого с обоих торцов. Ось цилиндра направлена перпендикулярно заряженной плоскости, а его торцы расположены на одинаковом расстоянии от нее. В силу симметрии поле равномерно заряженной плоскости должно быть везде направлено по нормали. Применение теоремы Гаусса дает: где σ – поверхностная плотность заряда, то есть заряд, приходящийся на единицу площади.