Не нужно нам владеть клинком, Не ищем славы громкой. Тот побеждает, кто знаком С искусством мыслить, тонким. Английский поэт Уордсворт.

Презентация:



Advertisements
Похожие презентации
Выполнила ученица 5 а класса Пятакова Дарья. Человеку часто приходится иметь дело с задачами, в которых нужно подсчитать число всех возможных способов.
Advertisements

Методы решения задач. Правило суммы Если конечные множества не пересекаются, то число элементов X U Y {или} равно сумме числа элементов множества X и.
К ОМБИНАТОРИКА. Решение задач. Орлова Л.В., Малышкина С.Ю.
Определение Область математики, в которой изучают комбинаторные задачи, называется комбинаторикой.
- самостоятельный раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить.
1.Правило суммы(стр2)Правило суммы(стр2) Образцы решений 2.Правило произведения (стр4)Правило произведения (стр4) Образцы решений 3.Пересекающиеся множества(
РАЗДЕЛ 8 Элементы теории вероятностей и математической статистики.
«Число, положение и комбинаторика – три взаимно пересекающиеся, но различные сферы мысли, к которым можно отнести все математические идеи» Джозеф Сильвестр.
Проект подготовили ученики 6 «Б» класса Ильчишина Елена Александров Илья Смирнов Николай Руководитель проекта: Ингинен О.В. Луга, 2013.
Комбинаторика. Определение множества Множество есть совокупность объединенных по некоторым признакам различных объектов, называемых элементами множества.
ТЕМА УРОКА: «ЭЛЕМЕНТЫ КОМБИНАТОРИКИ» (ПРАКТИКУМ) Цели: Повторить основные понятия комбинаторикиосновные понятия Сформировать умения решать различные виды.
Мастер-класс по теме : «Элементы комбинаторики: перестановки, сочетания и размещения». «Число, положение и комбинаторика – три взаимно пересекающиеся,
Правила комбинаторики Основные понятия алгебра 9 класс Выполнила Гуляева Е.В. учитель математики МОУ ПСШ.
Глава 9. Элементы математической статистики, комбинаторики и теории вероятностей §52. Сочетания и размещения. Часть II Цыбикова Тамара Раднажаповна, учитель.
УРОК 4. Элементы комбинаторики.. Задачи на непосредственный подсчет вероятностей Комбинаторика изучает количество комбинаций (подчиненное определенным.
Правила комбинаторики Основные понятия. КОМБИНАТОРИКОЙ называется раздел математики, в котором исследуется, сколько различных комбинаций (всевозможных.
Олимпиадные задачи из раздела «Статистика», «Комбинаторика», и «Теория вероятностей» Демидишина Галина Алексеевна, МБОУ «Лицей 3»
КОМБИНАТОРИКА Выполнила: ученица 11 класса МОШ I-III ступеней 2 Посадская Татьяна Учитель: Богомолова И.В.
LOGO Элементы комбинаторики..
«Число, положение и комбинаторика – три взаимно пересекающиеся, но различные сферы мысли, к которым можно отнести все математические идеи» Джозеф Сильвестр.
Транксрипт:

Не нужно нам владеть клинком, Не ищем славы громкой. Тот побеждает, кто знаком С искусством мыслить, тонким. Английский поэт Уордсворт

Введение Цель работы Задачи работы Что же такое «Комбинаторика»? История возникновения Правила решения комбинаторных задач Правила решения комбинаторных задач – Правило суммы Правило суммы – Правило произведения Правило произведения – Комбинации Комбинации С повторениями Без повторений Тезаурус Список используемой литературы и web-ресурсов Список используемой литературы и web-ресурсов Заключение Страница автора

1. Создать справочное пособие для учащихся классов, обучающихся на базовом уровне, образовательных учреждений. 2. Подготовить первую часть большого проекта «Теория вероятности как самое встречаемое в нашей жизни явление».

1.1Подобрать литературу и web – ресурсы по теме «Комбинаторика». 1.2 Исследовать все возможные методы решения комбинаторных задач на основе реальной жизни. 1.3Проследить историю выделения самостоятельной области математики – комбинаторики. 2.1Обосновать изучение курса комбинаторики в старшей школе как реальную необходимость при осуществлении курса принципа непрерывности образования «Школа – вуз». 2.2Наметить возможные варианты введения курса комбинаторики в школьное образовательное пространство. 2.3Подобрать материал для создания справочника.

Человеку часто приходится иметь дело с задачами, в которых нужно подсчитать число всех возможных способов расположения некоторых предметов или число всех возможных способов осуществления некоторого действия. Разные пути или варианты, которые приходится выбирать человеку, складываются в самые разнообразные комбинации. Такие задачи приходиться рассматривать при определении наиболее выгодных коммуникаций внутри города, при организации автоматической системы управления, значит и в теории вероятностей, и в математической статистике со всеми их многочисленными приложениями. И целый раздел математики, называемый комбинаторикой, занят поиском ответов на вопросы: сколько всего есть комбинаций в том или другом случае.

Комбинаторика – это раздел математики, в котором исследуются и решаются задачи выбора элементов из исходного множества и расположения их в некоторой комбинации, составленной по заданным правилам.

Комбинаторика как наука стала развиваться в XIII в. параллельно с возникновением теории вероятностей. Первые научные исследования по этой теме принадлежат итальянским ученым Дж. Кардано, Н. Чарталье ( ), Г. Галилею ( ) и французским ученым Б.Пискамо ( ) и П. Ферма. Комбинаторику, как самостоятельный раздел математики первым стал рассматривать немецкий ученый Г. Лейбниц в своей работе «Об искусстве комбинаторики», опубликованной в 1666г. Он также впервые ввел термин «Комбинаторика».

Правило суммы Правило произведения Комбинации

Задача: На столе лежат 3 черных и 5 красных карандашей. Сколькими способами можно выбрать карандаш любого цвета? Решение: Выбрать карандаш любого цвета можно 5+3=8 способами. Правило суммы в комбинаторике: Если элемент а можно выбрать m способами, а элемент в - n способами, причем любой выбор элемента а отличен от любого выбора элементов в, то выбор «а или в» можно сделать m+n способами. Примеры задач

Задача: В классе 10 учащихся занимаются спортом, остальные 6 учащихся посещают танцевальный кружок. 1)Сколько пар учащихся можно выбрать так, чтобы один из пары был спортсменом, другой танцором? 2)Сколько возможностей выбора одного ученика? Решение: 1)Возможность выбора спортсменов 10, а на каждого из 10 спортсменов выборов танцора 6. Значит, возможность выбора пар танцора и спортсмена 10·6=60. 2) Возможность выбора одного ученика 10+6=16.

Задача : Из города А в город В ведут 3 дороги. А из города В в город С ведут 4 дороги. Сколько путей, проходящих через В, ведут из А в С? Решение: Можно рассуждать таким образом: для каждой из трех путей из А в В имеется четыре способа выбора дороги из В в С. Всего различных путей из А в С равно произведению 3·4, т.е. 12. Правило произведения: Пусть нужно выбрать к элементов. Если первый элемент можно выбрать n 1 способами, второй – n 2 способами и т. д., то число способов к элементов, равно произведению n 1 · n 2 ·… nк. Примеры задач

Задача: В школьной столовой имеются 2 первых, 5 вторых и 4 третьих блюд. Сколькими способами ученик может выбрать обед, состоящий из первых, вторых и третьих блюд? Решение: Первое блюдо можно выбрать 2 способами. Для каждого выбора первого блюда существует 5 вторых блюд. Первые два блюда можно выбрать 2·5=10 способами. И, наконец, для каждой 10 этих выборов имеются четыре возможности выбора третьего блюда, т. е. Существует 2·5·4 способов составления обеда из трех блюд. Итак, обед может быть составлен 40 способами.

С повторениями Без повторений

Сочетания Размещения Перестановки

Размещением из n элементов по к (кn) называется любое множество, состоящее из любых к элементов, взятых в определенном порядке из данных n элементов. Количество всех размещений из n элементов по m обозначают: Примеры задач n! – факториал числа n

Задача: Сколькими способами 4 юноши могут пригласить четырех из шести девушек на танец? Решение: Два юноши не могут одновременно пригласить одну и ту же девушку. И варианты, при которых одни и те же девушки танцуют с разными юношами считаются, разными, поэтому: Возможно 360 вариантов.

Перестановкой из n элементов называется каждое расположение этих элементов в определенном порядке. Количество всех перестановок из n элементов обозначают P n P n =n! Примеры задач

Квартет Проказница Мартышка Осёл, Козёл, Да косолапый Мишка Затеяли играть квартет … Стой, братцы стой! – Кричит Мартышка, - погодите! Как музыке идти? Ведь вы не так сидите… И так, и этак пересаживались – опять музыка на лад не идет. Вот пуще прежнего пошли у них разборы И споры, Кому и как сидеть… Решение

Вероятно, крыловские музыканты так и не перепробовали всех возможных мест. Однако способов не так уж и много. Сколько? Здесь идет перестановка из четырех, значит, возможно P 4 = 4!=24 варианта перестановок.

Сочетанием без повторений называется такое размещение, при котором порядок следования элементов не имеет значения. Таким образом, количество вариантов при сочетании будет меньше количества размещений. Число сочетаний из n элементов по m обозначается: Примеры задач

Задача: Сколько трехкнопочных комбинаций существует на кодовом замке (все три кнопки нажимаются одновременно), если на нем всего 10 цифр. Решение: Так как кнопки нажимаются одновременно, то выбор этих трех кнопок – сочетание. Отсюда возможно:

Часто в задачах по комбинаторике встречаются множества, в которых какие-либо компоненты повторяются. Например: в задачах на числа – цифры. Для таких задач используются формулы: где n-количество всех элементов, n 1,n 2,…,n r -количество одинаковых элементов. Примеры задач

Задача: Сколько трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5? Решение: Так как порядок цифр в числе существенен, цифры могут повторяться, то это будут размещения с повторениями из пяти элементов по три, а их число равно:

Задача: В кондитерском магазине продавались 4 сорта пирожных: эклеры, песочные, наполеоны и слоеные. Сколькими способами можно купить 7 пирожных. Решение: Покупка не зависит от того, в каком порядке укладывают купленные пирожные в коробку. Покупки будут различными, если они отличаются количеством купленных пирожных хотя бы одного сорта. Следовательно, количество различных покупок равно числу сочетаний четырех видов пирожных по семь -

Задача: Сколькими способами можно переставить буквы слова «ананас»? Решение: всего букв 6. Из них одинаковы n 1 «а»=3, n 2 «н»=2, n 3 «с»=1. Следовательно, число различных перестановок равно

Гитман М.Б., Цылова Е.Г. Введение в комбинаторику и теорию вероятностей. Учеб. пособие.: Пермь, 1999 Грэхем Р., Кнут Д., Паташник О. Конкретная математика. М.: Мир, История математики с древнейших времён до начала XIX столетия / Под ред. А.Н. Колмогорова, А.П. Юшкевича. М: Наука, T.1-3. Клейн Ф. Лекции о развитии математики в XIX столетии. М.: Наука, Мордкович А.Г., Семенов П.В. События. Вероятности. Статистическая обработка данных. М.: Мнемозина,

Мы считаем, что работа достигла своих целей. Мы составили справочное учебное пособие, которое нацелено оживить школьную математику введением в неё интересных задач, посильных для учащихся теоретических вопросов. Работа предназначена для учащихся классов, обучающихся на базовом уровне, образовательных учреждений для углубления знаний по математике Отличительной способностью данного пособия являются: посильная для учащихся III ступени теоретическая часть; подбор и составление задач на основе жизненного материала, сказочных сюжетов. Мы надеемся, что наша работа заинтересует учащихся, поможет развитию их кругозора и мышления, будет способствовать более качественной подготовке к сдаче единого государственного экзамена.

Ученик: Захаров Дмитрий Класс: 10 Руководитель: Торопова Нина Анатольевна МОУ «Средняя образовательная школа с углубленным изучением отдельных предметов 5» г. Красноярска