Лекция 11 Дискретное преобразование Фурье Дискретное преобразование Фурье (ДПФ) относится к классу основных преобразований при цифровой обработке сигналов.

Презентация:



Advertisements
Похожие презентации
Лекция 11 Дискретное преобразование Фурье Преобразование Фурье где : Дискретный сигнал бесконечной длительности ; Спектр дискретного сигнала – непрерывная.
Advertisements

Лекция 8 План лекции 8 Контрольные вопросы Теорема отсчетов Дискретное преобразование Фурье Спектральная плотность мощности Дополнение последовательности.
Быстрое преобразование Фурье Введение. Представление сигналов с помощью гармонических функций В качестве примера рассмотрим представление сигнала типа.
Лекция 7 План лекции 7 Усреднение периодических функций Теорема Парсеваля Интегральное преобразование Фурье Свойства преобразования Фурье Связь между интегралом.
Дискретное преобразование Фурье Мультимедиа технологии.
Ряд Фурье и интеграл Фурье Презентация лекции по курсу «Общая теория связи» © Д.т.н., проф. Васюков В.Н., Новосибирский государственный.
Лекция 12 Быстрое преобразование Фурье Нахождение спектральных составляющих дискретного комплексного сигнала непосредственно по формуле ДПФ требует комплексных.
Математические основы цифровой обработки сигнала.
1 Лекция 3 АЛГОРИТМ ФОРМИРОВАНИЕ ВИДЕОСИГНАЛА. ФОРМИРОВАНИЕ ЦИФРОВОГО СИГНАЛА ТАШКЕНТ – 2012 год ТАШКЕНТ – 2012 год УЗБЕКСКОЕ АГЕНТСТВО СВЯЗИ И ИНФОРМАТИЗАЦИИ.
НЕКОТОРЫЕ СВЕДЕНИЯ ИЗ МАТЕМАТИЧЕСКОГО АНАЛИЗА Дельта-функция Дельта функция это функция, удовлетворяющая следующим условиям.
DSP Лекция 2 Digital Signal Processing. DSP Дискретные сигналы и системы Классификация сигналов и системКлассификация сигналов и систем Дискретные сигналы.
Лекция 5 Спектральный анализ непериодических сигналов Между сигналом и его спектральной плотностью существует однозначное соответствие. Для практических.
1 Тема 4 Спектральное представление сигналов Спек 4 тральная (частотная) форма представления сигналов использует разложение сигнальных функций на периодические.
Классификация сигналов Под сигналом обычно понимают величину, отражающую состояние физической системы. Поэтому естественно рассматривать сигналы как функции,
Введение в задачи исследования и проектирования цифровых систем Санкт-Петербургский государственный университет Факультет прикладной математики - процессов.
1 Детерминированные сигналы и их математические модели 1 часть.
Лекция 5 План лекции 5 Z-преобразование и его свойства Представление ЛПП-систем в Z-области Соединение ЛПП-систем Рекурсивные и нерекурсивные фильтры определение.
5. Спектральный метод анализа электрических цепей.
Численные методы в оптике кафедра прикладной и компьютерной оптики Дискретное преобразование Фурье.
Лекция 4 План лекции 4 Теория дискретных линейных систем Разностные уравнения Z-преобразование и его свойства Представление ЛПП-систем в Z-области.
Транксрипт:

Лекция 11 Дискретное преобразование Фурье Дискретное преобразование Фурье (ДПФ) относится к классу основных преобразований при цифровой обработке сигналов. Дискретное преобразование Фурье, по возможности вычисляемое быстрыми методами, лежит в основе различных технологий спектрального анализа. Моделью последовательности из дискретных отсчетов является сигнал из смещенных по времени дельта-функций:

Дискретное преобразование Фурье Мысленно периодизируем этот сигнал с периодом Дискретный периодический сигнал можно представить рядом Фурье: Коэффициенты этого ряда находят согласно формуле:

Дискретное преобразование Фурье Переходя к новой переменной, получим: Так как, окончательно имеем: (11.1)

Дискретное преобразование Фурье Соотношение, позволяющее вычислить комплексные амплитуды гармоник дискретного сигнала, представляет собой линейную комбинацию отсчетов этого сигнала. Его называют прямым дискретным преобразованием Фурье (ДПФ). Наряду с прямым ДПФ существует обратное дискретное преобразование Фурье: Замечание. В размещении множителя в выражении ДПФ нет полного единства. В некоторых источниках этот множитель относят к формуле обратного ДПФ, удаляя его из формулы для прямого ДПФ.

Свойства дискретного преобразования Фурье Линейность. Дискретное преобразование Фурье – линейное преобразование, то есть если последовательностям и с одним и тем же периодом соответствуют наборы гармоник и, то последовательности будет соответствовать спектр. Ортогональный дискретный базис Фурье, в котором выполняется ДПФ, представляет собой систему дискретных экспоненциальных функций (ДЭФ), заданную на дискретной временной оси отсчетами:

Свойства дискретного преобразования Фурье Симметрия. Свойство симметрии, которым обладает спектр непрерывного сигнала, сохраняется и для спектра дискретного периодического сигнала. Если отсчеты – вещественные числа, тогда коэффициенты ДПФ, номера которых расположены симметрично относительно, образуют сопряженные пары: Из формулы следует, что спектр является сопряжено симметричным относительно, то есть содержит ровно такое же количество информации, что и сам сигнал.

Свойства дискретного преобразования Фурье Гармоника с нулевым номером (постоянная составляющая) представляет собой среднее значение всех отсчетов сигнала на одном периоде: Если четное число, то и амплитуда гармоники с номером определяется суммой отсчетов с чередующимися знаками:

Свойства дискретного преобразования Фурье ДПФ круговой свертки. Возьмем две последовательности и одинаковой длины, ДПФ которых соответственно равны и. Вычислим их круговую свертку по одному периоду: Найдем точечное ДПФ этой свертки: (11.2)

Свойства дискретного преобразования Фурье Таким образом, круговой свертке дискретизированных и заданных на одном временном промежутке сигналов соответствует перемножение их спектров. Вычисление круговой свертки двух сигналов с помощью ДПФ осуществляется по следующему алгоритму: вычисление ДПФ исходных сигналов по формуле (11.1); перемножение коэффициентов полученных ДПФ согласно (11.2); вычисление сигнала с помощью обратного ДПФ полученной последовательности.

Свойства дискретного преобразования Фурье Равенство Парсеваля для дискретных сигналов. Определим значение, используя формулу ДПФ: Таким образом, мощность сигнала на отсчетах равна сумме мощностей его частотных компонентов.

Свойства дискретного преобразования Фурье Связь ДПФ с Z-преобразованием. Сравнивая формулу прямого ДПФ дискретной последовательности с формулой Z-преобразования, видим, что коэффициенты ДПФ равны значениям Z-преобразования этого сигнала в точках, равномерно распределенных по единичной окружности Z-плоскости. Получим Z-преобразование последовательности через коэффициенты ДПФ этой последовательности: