РЕШЕНИЕ НЕРАВЕНСТВ С ПАРАМЕТРАМИ МЕТОДОМ ОБЛАСТЕЙ
«Но когда эти науки (алгебра и геометрия) объединились, они энергично поддержали друг друга и быстро зашагали к совершенству». Ж.А. Лагранж Ж.А. Лагранж
АКТУАЛЬНОСТЬ РАБОТЫ определяется включением подобных задач в ЕГЭ. ПРОБЛЕМА ИССЛЕДОВАНИЯ: возможность применения координатного метода при решении задач с параметрами. ПРЕДМЕТ ИССЛЕДОВАНИЯ: классы неравенств и систем уравнений и неравенств, содержащих параметры и методы их решения.
«МЕТОД ОБЛАСТЕЙ» один из частных случаев координатного метода. Идея «МЕТОДА ОБЛАСТЕЙ» заключается в том, что решение задачи в исходной области сводится к решению совокупности более простых задач в каждой из областей, из которых составляется исходная область. Применение «МЕТОДА ОБЛАСТЕЙ» при решении неравенств с параметрами аналогично применению «МЕТОДА ИНТЕРВАЛОВ» для решения неравенств с одной переменной.
Найти все значения а, при которых неравенство выполняется для всех х из промежутка 2 х 3. Ответ :
Найти все значения параметра а, при которых в множестве решений неравенства нельзя расположить 2 отрезка длиной 2 и длиной 5, которые не имеют общих точек. Ответ : Решение:
Найти все значения параметра а, при каждом из которых множество решений неравенства не содержит ни одного решения неравенства Решение: Ответ : 1 х ++
-4 3,5 х ++ Найти все значения параметра а, при которых множество решений неравенства содержит все неотрицательные решения неравенства Решение: 1) 2) не удовлетворяет условию
Ответ :
1 х + Найти все значения параметра р, при которых область определения функции состоит из одной точки Решение: Ответ :
Таким образом, при решении неравенств «методом областей» необходимо: разложить данное неравенство на множители; найти и построить уравнения заданных функций, разбивающих координатную плоскость на«частичные области»; определить знак неравенства в каждой из получившихся областей; ответить на заданный вопрос.