К АСАТЕЛЬНАЯ К ОКРУЖНОСТИ. О А В С D R ОR – радиус СD – диаметр AB - хорда Работу выполнила Ученица 8 в класса МОУ СОШ 21 Шевяхова Виктория
Д АНО : Окружность с центром в точке О радиуса r Прямая, которая не проходит через центр О Расстояние от центра окружности до прямой обозначим буквой s O rs
В ОЗМОЖНЫ ТРИ СЛУЧАЯ : 1) s
В ОЗМОЖНЫ ТРИ СЛУЧАЯ : 2) s=r Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют только одну общую точку. O s=rs=r M
В ОЗМОЖНЫ ТРИ СЛУЧАЯ : 3) s>r Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек. O s>r r
К АСАТЕЛЬНАЯ К ОКРУЖНОСТИ Определение: П рямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности. O s=rs=r M m
С ВОЙСТВО КАСАТЕЛЬНОЙ : К АСАТЕЛЬНАЯ К ОКРУЖНОСТИ ПЕРПЕНДИКУЛЯРНА К РАДИУСУ, ПРОВЕДЕННОМУ В ТОЧКУ КАСАНИЯ. m – касательная к окружности с центром О М – точка касания OM - радиус O M m
П РИЗНАК КАСАТЕЛЬНОЙ : Е СЛИ ПРЯМАЯ ПРОХОДИТ ЧЕРЕЗ КОНЕЦ РАДИУСА, ЛЕЖАЩИЙ НА ОКРУЖНОСТИ, И ПЕРПЕНДИКУЛЯРНА РАДИУСУ, ТО ОНА ЯВЛЯЕТСЯ К АСАТЕЛЬНОЙ. окружность с центром О радиуса OM m – прямая, которая проходит через точку М и m – касательная O M m
С ВОЙСТВО КАСАТЕЛЬНЫХ, ПРОХОДЯЩИХ ЧЕРЕЗ ОДНУ ТОЧКУ : По свойству касательной АВО, АСО– прямоугольные АВО= АСО–по гипотенузе и катету: ОА – общая, ОВ=ОС – радиусы АВ=АС и О В С А Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
З АДАЧА Дано: OABC-квадрат AB = 6 см Окружность с центром O радиуса 5 см Найти: секущие из прямых OA, AB, BC, АС О А В С О
Р ЕШЕНИЕ Дано: АВСО - квадрат; АВ = 6см. Окружность (О; 5см). Определить: какие из прямых ОА, АВ, ВС и АС секущие по отношению к окружности (О; 5см). r < АВ, значит, прямые ОА и ОС - секущие.
П РИМЕНЕНИЕ КАСАТЕЛЬНОЙ Машиностроение
Баллистика
Архитектура
Медицина
Физика