МОУ Засосенская СОШ им.Н.Л. Яценко Презентация по геометрии на тему: «Перпендикуляр и наклонные. Угол между прямой и плоскостью» Выполнила: ученица 10а.

Презентация:



Advertisements
Похожие презентации
Определения Перпендикуляром, опущенным из данной точки на данную прямую, называется отрезок, соединяющий данную точку с точкой плоскости и лежащий на.
Advertisements

Определение Общим перпендикуляром двух скрещивающихся прямых называется отрезок с концами на этих прямых, являющийся перпендикуляром к каждой их них.
Перпендикуляр и наклонная. Теорема: Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна.
ТЕМА УРОКА Перпендикуляр, наклонная, проекция наклонной на плоскость.
ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть точка A не принадлежит плоскости π. Проведем прямую a, проходящую через эту точку и перпендикулярную π. Точку пересечения.
ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть точка A не принадлежит плоскости π. Проведем прямую a, проходящую через эту точку и перпендикулярную π. Точку пересечения.
Перпендикуляр Перпендикуляром, опущенным из точки A на прямую а, называется отрезок AB, соединяющий точку A с точкой B прямой a, перпендикулярный прямой.
Перпендикуляр и наклонная mathvideourok.moy.su. А Н С отрезок АН называется перпендикуляром, опущенным из точки А на плоскость точка Н основание этого.
Перпендикуляр и наклонныеПерпендикуляр из точки А к плоскости a Через точку А проведем прямую, перпендикулярную к плоскости a. Обозначим буквой Н точку.
B A C E K M A B C K L M
Перпендикуляр и наклонная. Угол между прямой и плоскостью.
Перпендикуляр и наклонные. Расстояние от точки до прямой АН|____, Н – основание перпендикуляра, АМ – наклонная, М – основание _____, МН – проекция ___________________.
Презентация к уроку (геометрия, 10 класс) по теме: Презентация угол между прямой и плоскостью, 10 кл.
Теорема Если прямая, проведённая к плоскости через основание наклонной, перпендикулярна её проекции, то она перпендикулярна и наклонной. β Дано: с АВ.
Расстояние от точки до прямой. Расстояние между параллельными прямыми. Урок геометрии в VII классе 1 Подготовила учитель математики первой квалификационной.
Перпендикуляр и наклонные. Перпендикуляр и наклонные. Подготовила Михайловская Кристина. (10Б)
Перпендикулярность прямых Перпендикулярность прямой и плоскости. Перпендикулярность плоскостей Проверь себя Преподаватель математики ОГБОУ ПЛ 1 г.Иваново.
МОУ – открытая ( сменная ) общеобразовательная школа 1 г Искитима год.
Расстояние от точки до плоскости А Н М α Отрезок АН называется перпендикуляром, проведенным из точки А к плоскости α. Точка Н называется основанием перпендикуляра.
1.Ввести понятие расстояния от точки до плоскости. 2. Доказать теорему о трех перпендикулярах. 3. Научиться применять теорему о трех перпендикулярах при.
Транксрипт:

МОУ Засосенская СОШ им.Н.Л. Яценко Презентация по геометрии на тему: «Перпендикуляр и наклонные. Угол между прямой и плоскостью» Выполнила: ученица 10а класса Доронина Снежана. Проверила: учитель математики высшей категории Петрученя Наталья Васильевна

Перпендикуляр Перпендикуляром к данной прямой называется отрезок прямой, перпендикулярной к данной, который имеет одним из своих концов их точку пересечения. Конец отрезка, лежащий на данной прямой, называется основанием перпендикуляра.

Наклонная Наклонной, проведенной из данной точки к данной прямой, называется отрезок, соединяющий данную точку с любой точкой прямой, неявляющейся основанием перпендикуляра, опущенного из этой же точки на данную прямую.

На рисунке АН - перпендикуляр, АВ, АС, АТ - наклонные. Расстоянием между точками является длина отрезка, соединяющего эти точки. Точка называется равноудаленной от двух и более данных точек, если растояния от этой точки до каждой данной точки равны. Расстоянием от точки до прямой является длина перпендикуляра опущенного из донной точки на данную прямую. Точка называется равноудаленной от двух и более прямых, если растояния от этой точки до каждой прямой равны.

Теорема 1 Из точки, не принадлежащей данной прямой, можно провести перпендикуляр к этой прямой, причем только один.

Теорема 2 Из данной точки прямой можно восстановить перпендикуляр, причем только один.

Теорема 3 Любая точка перпендикуляра, проходящего через середину данного отрезка, равноудалена от его концов. Доказательство: Пусть AB - отрезок, C - его середина, и H - произвольная точка на серединном перпендикуляре. Тогда углы HCA и HCB прямые, HC = HC, AC = BC. Значит, треугольники ACH и BCH равны. Следовательно, их стороны AH и BH равны. Что и требовалось доказать.

Теорема 4 Если данная точка равноудалена от концов отрезка, то она лежит на прямой, перпендикулярной данному отрезку и проходящей через его середину.

Угол между прямой и плоскостью Прямая a пересекает плоскость α. а не перпендикулярна плоскости. Основания перпендикуляров, опущенных из точек прямой a на плоскость α, лежат на прямой a`.Эта прямая называется проекцией прямой a на плоскость α. Угол между прямой и проекцией этой прямой на плоскость называется углом между прямой и плоскостью.

Выводы: Темы « Перпендикуляр и наклонные.Угол между прямой и плоскостью» очень интересные и не маловажные в изучении геометрии. Желаю успехов в изучении их!