Презентация по теме: Фигуры вращения Балабекова Марият 02 группа
Содержание моей презентации: Цилиндр Конус и усечённый конус Шар и сфера
Цилиндр Определение. Тело, которое образуется при вращении прямоугольника вокруг прямой, содержащей его сторону, называется цилиндром.
Круговой прямой цилиндр
Наклонный цилиндр Наклонный цилиндр – цилиндр, образующие которого не перпендикулярны плоскостям его оснований.
Пусть R – радиус основания; H – высота цилиндра, тогда S бок =2πRH S полн =S бок +2S осн =2πRH + +2πR 2 =2πR(R+H) V=πR 2 H Основные формулы
Конус Определение: Тело, которое образуется при вращении прямоугольного треугольника вокруг прямой, содержащий его катет, называется прямым круговым конусом.
Прямой круговой конус
Если R – радиус основания, H - высота, L– обра- зующая конуса, то V=1/3πR²H S бок =πRL S полн =S бок +S осн =πRL+ +πR²=πR(L+R) Основные формулы
Усеченный конус Часть конуса, ограниченная его основанием и сечением, параллельным плоскости основания, называется усеченным конусом.
Усеченный прямой конус Формулы: Здесь h – высота усеченного конуса; R и R 1 – радиусы его верхнего и нижнего оснований; l – его образующая
Шар и сфера Определение. Фигура, полученная в результате вращения полукруга вокруг диаметра, называется шаром. Поверхность, образуемая при этом полуокружностью, называется сферой.
Шар – тело вращения OS, ON, OC, OD – радиусы; NS, CD – диаметры шара; C и D, N и S – диаметрально противоположные точки
Как Архимед находил объем шара Площади сечений: S ц, S ш, S к. S ц =4πR²; S ш =π[CE]², где [CE]²=[EO]²- [OC]²=R²- -(x-R)²=2Rx-x²; S к =π[CD]²= πx²
Основные формулы R – радиус шара V шара =4/3πR³ S сферы =4πR²
Уравнение сферы Пусть A – центр(a; b; c) MA – радиус, тогда MA²=(x-a)²+(y-b)²+(z- c)²; (x-a)²+(y-b)²+(z- c)²=R²
Конец