Колебательный контур – это система, состоящая из последовательно соедененных конденсатора емкости C, катушки индуктивности L и проводника с сопротивлением R (рис.1.) Рис.1.
Если нет сопротивления, то электрические колебания в колебательном контуре будут незатухающими
Полная энергия Где i и q – сила тока и электрический заряд в любой момент времени
Свободные электромагнитные колебания – это периодически повторяющиеся изменения электромагнитных величин (q – электрический заряд, I – сила тока, U – разность потенциалов), происходящие без потребления энергии от внешних источников.
Если сопротивление R равно нулю: Решение этого уравнения:
Если какая-либо величина меняется по времени по закону то она совершает гармонические колебания. Промежуток времени, через который значения колеблющихся величин периодически повторяются, называется периодом колебания: Число колебаний в единицу времени называется частотой колебаний: - Формула Томпсона
Свободные электромагнитные колебания в реальном колебательном контуре, представляющем собой последовательное соединение катушки индуктивности L, конденсатора емкости С и электрического сопротивления R – называются затухающими электромагнитными колебаниями Уравнение изменения заряда q на обкладках конденсатора во времени: Решение уравнения: Зависимость заряда от времени при затухающем колебании Циклическая частота свободных электромагнитных колебаний в контуре: Период затухающих колебаний:
Незатухающие колебания в цепи под действием внешней, периодически изменяющейся ЭДС – называются вынужденными электромагнитными колебаниями Магнитный поток Ф сквозь плоскость рамки: По закону электромагнитной индукции:
Из закона Ома для участка цепи переменного тока: Сдвиг фаз между колебаниями силы тока и напряжения (отношение реактивного сопротивления к активному):
Явление резкого возрастания амплитуды вынужденных колебаний тока в колебательном контуре, которое происходит при совпадении частоты вынужденных колебаний с собственной частотой колебательного контура – называется резонансом. Если Um = const, то амплитуда вынужденных колебаний силы тока зависит от ω : Условие резонанса токов: