Презентация на тему: «Призма». Содержание:Содержание: 1.) О ОО Определение призмы. 2.) виды призм: - прямая призма; - наклонная призма; - правильная призма;

Презентация:



Advertisements
Похожие презентации
Призма Определение призмы: А1А2…АnВ1В2Вn– призма Многоугольники А1А2…Аn и В1В2…Вn – основания призмы Параллелограммы А1А2В2В1, А1А2В2В1,… АnА1В1Вn – боковые.
Advertisements

Призма Многогранник, составленный из двух равных многоугольников A 1 A 2 …A n и B 1 B 2 …B n, расположенных в параллельных плоскостях, и n параллелограммов,
Призма Многогранник, составленный из двух равных многоугольников A 1 A 2 …A n и B 1 B 2 …B n, расположенных в параллельных плоскостях, и n параллелограммов,
Многогранники. Многогранником называется ограниченное тело, поверхность которого состоит из конечного числа многоугольников.
Работу выполнили:Шабалина Мария и Ганджалян Жанна Преподаватель геометрии: Хайбрахманова Г.Ф.
ПРИЗМЫ Призмой называется многогранник, у которого две грани (основания) лежат в параллельных плоскостях, а все ребра вне этих граней параллельны между.
План: Призмы вокруг нас Сечения призм Поверхность призм Виды призм и их особенности Общие свойства призм Элементы призм Понятие призм.
Презентация на тему : ПРИЗМА Автор : Нечаев Кирилл Андреевич 2011 Западное Окружное Управление Департамента Образования города Москвы ГБОУ города Москвы.
ПРИЗМА. Определение 1. Многогранник, две грани которого - одноименные многоугольники, лежащие в параллельных плоскостях, а любые два ребра, не лежащие.
ПОНЯТИЕ МНОГОГРАННИКА. Что такое тетраэдр? Это геометрическое тело (поверхность), составленная из четырех треугольников.
Выполнил: Ледов Владислав. Двугранным углом называется фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой Плоскость, перпендикулярная.
РА1А2…Аn – пирамида Многоугольник А1А2…Аn – основание пирамиды. Треугольники - боковые грани. Точка Р- вершина пирамиды. Отрезки РА1, РА2…РАn -боковые.
Цилиндр: история Слово "цилиндр" происходит от греческого kylindros, что означает "валик", "каток " … Слово "цилиндр" происходит от греческого kylindros,
Объем прямой призмы. Цели урока: Вспомнить понятие призмы. Изучить теорему об объеме призмы. Провести доказательство. Применить полученные знания на практике.
Двугранный угол Двугранный угол – это фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой. Грань Ребро Грань Линейный угол.
Призма А В E A1A1 B1B1 D С Призмой называется многогранник, состоящий из двух плоских многоугольников, совмещаемых параллельным переносом, и всех отрезков,
Многогранник это поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело.
Подготовила учитель математики МКОУ СОШ п. Кашхатау Кульбаева А.Ю.
Гороховой Юлии 11 « А » школа 531. Призма - это многогранник, в основаниях которого лежат равные многоугольники, а боковые грани - параллелограмы.
Объем прямой призмы. Теорема: объем прямой призмы равен произведению площади основания на высоту.
Транксрипт:

Презентация на тему: «Призма»

Содержание:Содержание: 1.) О ОО Определение призмы. 2.) виды призм: - прямая призма; - наклонная призма; - правильная призма; 3.) Площадь полной поверхности призмы. 4.) Площадь боковой поверхности призмы. 5.) Объём призмы. 6.) Д окажем теорему для треугольной призмы. 7.) Докажем теорему для произвольной призмы. 8.) Сечения призм: - перпендикулярное сечение призмы; 9.) Призмы встречающиеся в жизни.

Определение призмы: А1А2…АnВ1В2Вn– призма Многоугольники А1А2…Аn и В1В2…Вn – основания призмы Параллелограммы А1А2В2В1, А1А2В2В1,… АnА1В1Вn – боковые грани Отрезки А1В1, А2В2…АnBn – боковые ребра призмы Призмой называется многогранник, у которого две грани ( основания ) лежат в параллельных плоскостях, а все ребра вне этих граней параллельны между собой. Грани призмы, отличные от оснований, называются боковыми гранями, а их ребра называются боковыми ребрами. Все боковые ребра равны между собой как параллельные отрезки, ограниченные двумя параллельными плоскостями. Все боковые грани призмы являются параллелограммами. Соответствующие стороны оснований призмы равны и параллельны. Поэтому в основаниях лежат равные многоугольники. Поверхность призмы состоит из двух оснований и боковой поверхности. Высотой призмы называется отрезок, являющийся общим перпендикуляром плоскостей, в которых лежат основания призмы. Высота призмы равна расстоянию h между плоскостями оснований. Высота призмы равна расстоянию h между плоскостями оснований.

Виды призм Шестиугольная Треугольная Четырехугольная призма призма призма

Наклонная и прямая призма Если боковые ребра призмы перпендикулярны основаниям то призма называется прямой, в противном случае – наклонной.

Правильная призма Призма называется правильной, если она прямая и ее основания - правильные многоугольники.

Площадь полной поверхности призмы

Площадь боковой поверхности призмы ТЕОРЕМА: Площадь боковой поверхности прямой призмы равна половине произведения периметра основания на высоту призмы.

Объем наклонной призмы ТЕОРЕМА: Объем наклонной призмы равен произведению площади основания на высоту.

Доказательство Докажем сначала теорему для треугольной призмы. 1. Рассмотрим треугольную призму с объемом V, площадью основания S и высотой h. Отметим точку О на одном из оснований призмы и направим ось Ох перпендикулярно к основаниям. Рассмотрим сечение призмы плоскостью, перпендикуляр­ной к оси Ох и, значит, параллельной плоскости основания. Обозначим буквой х абсциссу точки пересе­чения этой плоскости с осью Ох, а через S (х) площадь получившегося сечения. Докажем, что площадь S (х) равна площади S основания призмы. Для этого заметим, что треуголь­ники ABC (основание призмы) и А1B1С1 (сечение призмы рассматриваемой плоскостью) равны. В самом деле, четырехугольник АA1BB1 параллелограмм (отрезки АА1 и ВВ1 равны и параллельны), поэтому А1В1=АВ. Аналогично доказывается, что В1С1=ВС и А1С1=АС. Итак, треугольники А1В1С1 и ABC равны по трем сторонам. Следовательно, S(x)=S. Применяя теперь основную формулу для вычисления объемов тел при а=0 и b=h, получаем

2. Докажем теперь теорему для произвольной призмы с высотой h и площадью основания S. Такую призму можно разбить на треугольные призмы с общей высотой h. Выразим объем каждой треугольной призмы по доказанной нами формуле и сложим эти объемы. Вынося за скобки общий множитель h, получим в скобках сумму площадей оснований треугольных призм, т. е. площадь S основания исходной призмы. Таким образом, объем исходной призмы равен S * h. Теорема доказана.

Многоугольник, плоскость которого перпендикулярна боковым ребрам призмы, а вершины лежат на прямых, содержащих ребра называется перпендикулярным сечением призмы.