Www.matematika-na5.narod.ru. Если боковое ребро призмы перпендикулярно плоскости ее основания, то такую призму называют прямой; если боковое ребро призмы.

Презентация:



Advertisements
Похожие презентации
ПРИЗМА. Определение 1. Многогранник, две грани которого - одноименные многоугольники, лежащие в параллельных плоскостях, а любые два ребра, не лежащие.
Advertisements

Призма А В E A1A1 B1B1 D С Призмой называется многогранник, состоящий из двух плоских многоугольников, совмещаемых параллельным переносом, и всех отрезков,
Гороховой Юлии 11 « А » школа 531. Призма - это многогранник, в основаниях которого лежат равные многоугольники, а боковые грани - параллелограмы.
Площадью полной поверхности призмы площадью боковой поверхности призмы Площадью полной поверхности призмы называется сумма площадей всех граней, а площадью.
ПРИЗМА. Евклид определяет призму как телесную фигуру, заключенную между двумя равными и параллельными плоскостями (основаниями) и с боковыми гранями -
Презентация на тему : ПРИЗМА Автор : Нечаев Кирилл Андреевич 2011 Западное Окружное Управление Департамента Образования города Москвы ГБОУ города Москвы.
Многогранником называется поверхность, составленная из многоугольников, ограничивающих некоторое геометрическое тело.
Призма Многогранник, составленный из двух равных многоугольников A 1 A 2 …A n и B 1 B 2 …B n, расположенных в параллельных плоскостях, и n параллелограммов,
Многогранник это поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело.
Призма Многогранник, составленный из двух равных многоугольников A 1 A 2 …A n и B 1 B 2 …B n, расположенных в параллельных плоскостях, и n параллелограммов,
ПРИЗМА. Евклид определяет призму как телесную фигуру, заключенную между двумя равными и параллельными плоскостями (основаниями) и с боковыми гранями -
апофема высота боковой грани правильной пирамиды, проведённая из её вершины; боковые грани треугольники, сходящиеся в вершине; боковые ребра общие стороны.
Учитель 1 категории Попова В.В. МБОУ СОШ 3. Тетраэдр Тетраэдр – поверхность, составленная из четырех треугольников. многогранником Поверхность, составленную.
Сторона основания правильной треугольной призмы равна 8 см, боковое ребро равно 6 см. Найдите площадь сечения, проходящего через сторону верхнего основания.
Параллелепипед Параллелепипед – поверхность, составленная из шести параллелограммов.
Таблица вычисления площади боковой поверхности, площади основания и площади полной для правильных призм.
Параллелепипед Параллелепипед – поверхность, составленная из шести параллелограммов.
Многогранником называется поверхность, составленная из многоугольников, ограничивающих некоторое геометрическое тело.
Параллелепипед Параллелепипед – поверхность, составленная из шести параллелограммов.
Призма. Решение задач В прямоугольном параллелепипеде стороны основания равны 12 см и 5 см. Диагональ параллелепипеда образует с плоскостью основания.
Транксрипт:

Если боковое ребро призмы перпендикулярно плоскости ее основания, то такую призму называют прямой; если боковое ребро призмы перпендикулярно плоскости ее основания, то такую призму называют наклонной. У прямой призмы боковые грани - прямоугольники. Перпендикуляр к плоскостям оснований, концы которого принадлежат этим плоскостям, называют высотой призмы.

Свойства призмы. 1. Основания призмы являются равными многоугольниками. 2. Боковые грани призмы являются параллелограммами. 3о. Боковые ребра призмы равны.

Сечение призмы 1. Сечение призмы плоскостью, параллельной основанию. В сечении образуется многоугольник, равный многоугольнику, лежащему в основании. 2. Сечение призмы плоскостью, проходящей через два не соседних боковых ребра. В сечении образуется параллелограмм. Такое сечение называется диагональным сечением призмы. В некоторых случаях может получаться ромб, прямоугольник или квадрат.

Наиболее доступными и эффективными методами построения сечения призмы являются три метода: 1. Метод следов. 3. Комбинированный метод. 2. Метод вспомогательных сечений.

Сечение правильной призмы. 1. Сечение правильной призмы плоскостью, параллельной основанию. В сечении образуется правильный многоугольник, равный многоугольнику, лежащему в основании. 2. Сечение правильной призмы плоскостью, проходящей через два не соседних боковых ребра. В сечении образуется прямоугольник. В некоторых случаях может образоваться квадрат.

Задача. Дано: Сторона основания правильной треугольной призмы равна 8 см, боковое ребро - 6 см. Найдите Sсеч, проходящего через сторону верхнего основания и противолежащую вершину нижнего основания. Решение: Треугольник A 1 B 1 C 1 - равнобедренный(A 1 B=C 1 B как диагональ равных граней) 1)Рассмотрим треугольник BCC 1 – прямоугольный BC 1 2 = BС 2+ CC 1 2 BC 1 = 64+36=10 см 2) Рассмотрим треугольник BMC 1 – прямоугольный BC 1 2 = BM 2+ MC 1 2 BM 2 = BC MC 1 2 BM 2 =100-16=84 BM = 84=2 21 см 3) Sсеч= 1 2 A 1 C 1* BM= 1 2*2 21 см*8=8 21

A1A1 B1B1 C1C1 D1D1 A B C D Дано: правильная призма, АВ=3см, АА 1 = 5см Найти: Диагональ основания 32см Диагональ боковой грани 34см Диагональ призмы 43см Площадь основания 9см 2 Площадь диагонального сечения 152см 2 Площадь боковой поверхности 60см 2 Площадь поверхности призмы 78см 2 A B C D A B C D