Производная степенной функции УРОК алгебры и начала анализа в 11 «Б» классе учителя лицея 179 ПАК НАТАЛЬИ НИКОЛАЕВНЫ
Девиз урока Кто такой учёный? Определение. Тот, кто ночами, забыв про кровать. Усердно роется в книжной груде. Чтобы ещё кое-что узнать Из того, что знают другие люди. Тот, кто ночами, забыв про кровать. Усердно роется в книжной груде. Чтобы ещё кое-что узнать Из того, что знают другие люди. (П. Хейне – американский экономист, доктор философии)
Математики о производной. « Слова «производная» и «произошло» имеют похожие части слова, да и смысл похож: производная происходит от исходной функции (переложив на отношения человека: исходная функция - «мама», её производная - «дочь»). « Слова «производная» и «произошло» имеют похожие части слова, да и смысл похож: производная происходит от исходной функции (переложив на отношения человека: исходная функция - «мама», её производная - «дочь»). Производная - часть математической науки, одно из её звеньев. Нет этого звена - прерваны связи между многими понятиями.» Производная - часть математической науки, одно из её звеньев. Нет этого звена - прерваны связи между многими понятиями.»
Что называется производной? Производной функции в данной точке называется предел отношения приращения функции в этой точке к приращению аргумента, когда приращение аргумента стремится к нулю.
«Алгоритм нахождения производной»
Исследуя функции, можно встретить случаи, когда функция определена, но не дифференцируема. Что это? Почему так происходит? Можно ли этому найти объяснения?
Взгляд из детства. Всем с детства известно такое явление, как движение мяча, падающего на пол и упруго отскакивающего от него. Это явление можно объяснить с помощью законов физики. Попробуем переложить всё это на математический язык.
При отскоке от пола (при h=0) направление движения мяча меняется (и функция достигает минимума), однако в эти моменты скорость мяча не равна нулю, касательную к графику h провести нельзя. На графике скорости мяча мы видим: в момент отскока скорость мяча однозначно найти нельзя - график скорости в эти моменты имеет разрывы. (Производная в этих точках не существует).
Примеры функций, имеющих особые точки. Все функции вида у = |f(x)|, при f(x)=0 имеют особые точки - точки излома. Частный случай: у = |х|, где х=0 - особая точка.
Геометрический смысл производной состоит в том, что значение производной функции y=f(x) в точке x равно угловому коэффициенту касательной к графику функции в точке с абсциссой x 0 Геометрический смысл производной состоит в том, что значение производной функции y=f(x) в точке x равно угловому коэффициенту касательной к графику функции в точке с абсциссой x 0
Геометрический смысл производной
Физический смысл скоростьускорение Производная от перемещения по времени является мгновенная скорость. Производная от скорости по времени является ускорением.
Точка движется прямолинейно по закону Вычислите скорость движения точки: а) в момент времени t; б) в момент времени t=2с. Решение.а)б)
Найдите скорость и ускорение для точки, движущейся по закону а) в момент времени t; б) в момент времени t=3с. Решение.
Проблемная задача Две материальные точки движутся прямолинейно по законам Две материальные точки движутся прямолинейно по законам В какой момент времени скорости их равны, т.е.
Решение проблемной задачи
Упражнение для глаз
Отдых для глаз Не отрывая глаз, смотрите на двигающийся круг
Разбор некоторых задач самостоятельной работы m(l) = 3l 2 + 5l (г), l АВ = 20 см, сер = ? сер = ?Решение: Т.к. (l) = m(l), то (l) = 6l + 5. l = 10 см, (10) = = 65(г/см 3 ) Ответ: 65 г/см 3.
Разбор некоторых задач самостоятельной работы