Рассмотрим два полупространства, образованных непараллельными плоскостями Пересечение этих полупространств будем называть двугранным углом Прямую, по которой пересекаются плоскости – границы полупространств, называют ребром двугранного угла, а полуплоскости этих плоскостей, образующие двугранный угол, - гранями двугранного угла. Ребро двугранного угла
Прямую, по которой пересекаются плоскости – границы полупространств, называют ребром двугранного угла, а полуплоскости этих плоскостей, образующие двугранный угол, - гранями двугранного угла. Грань двугранного угла
K B a A β T A β a B Двугранный угол с гранями, β ребром а обозначают а β. Можно использовать и такие обозначения двугранного угла, как K(AB)T; (AB) β (рис.94,95). Рис.94 Рис.95
Для измерения двугранного угла введём понятие его линейного угла. На ребре а двугранного угла а β отметим произвольную точку O и в гранях и β проведём из точки O соответственно лучи ОА и ОВ, перпендикулярные ребру а. а β О А В Угол АОВ, образованный этими лучами, называется линейным углом двугранного угла а β. Линейный угол двугранного угла
а β О А В Так как ОА а,ОВ а, то плоскость АОВ перпендикулярна прямой а. γ линейный угол двугранного угла есть пересечение данного двугранного угла и плоскости, перпендикулярной его ребру. Это означает, что линейный угол двугранного угла есть пересечение данного двугранного угла и плоскости, перпендикулярной его ребру.
Теорема : Величина линейного угла не зависит от выбора его вершины на ребре двугранного угла. Определение : Величиной двугранного угла называется величина его линейного угла. Величина двугранного угла (измеренная в градусах ) принадлежит промежутку (0°;180°).
Двугранный угол является острым, прямым или тупым, если его линейный угол соответственно острый, прямой или тупой. а β острый
Двугранный угол является острым, прямым или тупым, если его линейный угол соответственно острый, прямой или тупой. а β прямой
Двугранный угол является острым, прямым или тупым, если его линейный угол соответственно острый, прямой или тупой. а β тупой
Заметим, что аналогично тому, как и на плоскости, в пространстве определяются смежные и вертикальные двугранные углы. γ а β смежные
Заметим, что аналогично тому, как и на плоскости, в пространстве определяются смежные и вертикальные двугранные углы. β β1β1 а 1 вертикальные
Определение : Углом между двумя пересекающимися плоскостями называется наименьший из двугранных углов, образованных при их пересечении. Угол между параллельными или совпадающими плоскостями полагается равным нулю.
β β1β1 а 1 с Если величина угла между плоскостями и β равна, то пишут : ( ; β)=. Величина угла между плоскостями принадлежит промежутку [0°;90°].
Учебник ГЕОМЕТРИЯ 10 класс Е.В.Потоскуев, Л.И. Звавич §14