Титульный лист Творческая работа Коноховой Елены ученицы 8 класса МОУ «СОШ с.Петропавловка Саратовской области Дергачёвского района» Научный руководитель:

Презентация:



Advertisements
Похожие презентации
Предметная область: математика Творческая работа учащихся 6 класса МОУ «СОШ с.Петропавловка Саратовской области Дергачёвского района» Бычкова Андрея Павловича,
Advertisements

Внеклассная работа по математике В 6-8 КЛАССАХ БУМАЖНОЕ КОЛЬЦО В МАТЕМАТИКЕ - ЛИСТ МЁБИУСА Соединим бумажную ленту так: Точку А с точкой b Точку В с.
«Лист Мёбиуса – символ математики, Что служит высшей мудрости венцом… Он полон неосознанной романтики: В нём бесконечность свёрнута кольцом…» Н.Ю.Иванова.
Исследовательский проект Лист Мёбиуса –односторонняя поверхность Работу выполнил Безбородов Фёдор, учащийся 5 Б класса лицея 24. Руководитель: учитель.
Лист Мёбиуса. Белоброва Анна и Саенко Татьяна, 7-а класс, гимназия 16.
Тема урока: изготовление «Цветка Мебиуса». Цель: Рассмотреть особенности проявления математических закономерностей в декоративно- прикладном искусстве;
Вишневская Лидия Дмитриевна учитель I категории образование высшее педагогический стаж 21 год школа 28 г. Симферополь 2013 год.
Раздел геометрии, изучающий свойства фигур и тел, которые не изменяются при их непрерывных деформациях ( растяжениях, сжатиях), как если бы они были сделаны.
ЛЕНТА МЁБИУСА. ПРАКТИЧЕСКАЯ РАБОТА. ТОПОЛОГИЯ Термин от др.-греч. τόπος место и λόγος слово, учение это раздел математики, изучающий в самом общем виде.
Лист Мёбиуса Презентация по математике на тему: Выполнила ученица 8 класса Холязинской основной школы Вантеева Екатерина.
Автор: Малашинский Семён Сергеевич, 5В класс, Муниципальное бюджетное общеобразовательное учреждение «Гимназия 1» Руководитель: Афонина Светлана Анатольевна,
ЛИСТ МЁБИУСА Выполнил: Дайчман Данил ОмГТУ ЭМ-161.
Лист Мёбиуса ( лента Мёбиуса, петля Мёбиуса ) топологический объект, простейшая неориентируемая поверхность с краем, односторонняя при вложении в обычное.
Анна Бердникова, Наталья Атланова, Алена Белякова. 7 «А» класс Руководитель: Сиденко Алла Александровна.
ЛИСТ МЁБИУСА. Август Фердинанд Мёбиус ( )
«Загадочный лист Мёбиуса» Автор: учащаяся 5 класса Лисицкая Елизавета Муниципальное образовательное учреждение основная общеобразовательная школа 59 Кировского.
Лист Мёбиуса относится к числу «математических неожиданностей». Рассказывают, что открыть свой «лист» Мёбиусу помогла служанка, сшившая однажды неправильно.
Л ИСТ М ЁБИУСА Работу выполнил ученик 6 В класса Чарышкин Глеб Руководитель Галиханова Т.В.
Что вы знаете о ленте Мёбиуса ? Хотите узнать больше ? Мы вам поможем ! Авторы : 12 одиннадцатиклассников МОУ Ново-Павловской СОШ.
Познакомиться с историей создания листа Мёбиуса. Познакомиться с наукой, изучающей подобные фигуры. Познакомиться с применением листа Мёбиуса в жизни.
Транксрипт:

Титульный лист Творческая работа Коноховой Елены ученицы 8 класса МОУ «СОШ с.Петропавловка Саратовской области Дергачёвского района» Научный руководитель: Кутищева Нина Семёновна Год создания: 2009

Предисловие Многие знают, что такое лента (лист) Мёбиуса. Тем, кто ещё не знаком с удивительным листом, который относится к «математическим неожиданностям», я предлагаю вместе со мной провести исследование и окунуться в светлое чувство познания.

Таинственный и знаменитый лист Мёбиуса (иногда говорят : лента Мёбиуса) придумал в 1858г. немецкий геометр Август Фердинанд Мёбиус ( ), ученик «короля математиков» Гаусса. Мёбиус был первоначально астрономом, как Гаусс и многие другие из тех, кому математика обязана своим развитием. В те времена занятия математикой не встречали поддержки, а астрономия давала достаточно денег, чтобы не думать о них, и оставляла время для собственных размышлений. И Мёбиус стал одним из крупнейших геометров Х1Х в. В возрасте 68 лет ему удалось сделать открытие поразительной красоты. Это открытие односторонних поверхностей, одна из которых – лист Мёбиуса.

Лист Мёбиуса – один из объектов области математики под названием «топология» (по- другому – «геометрия положений»). Удивительные свойства листа Мёбиуса – он имеет один край, одну сторону, – не связаны с его положением в пространстве, с понятиями расстояния, угла и тем не менее имеют вполне геометрический характер. Изучением таких свойств занимается топология. В евклидовом пространстве существуют два типа полос Мёбиуса в зависимости от направления закручивания: правые и левые.

Рассказывают, что открыть свой «лист» Мёбиусу помогла служанка, сшившая однажды неправильно концы ленты. Легенда

Увлекательное исследование Запаситесь несколькими листами обычной белой бумаги, клеем и ножницами.

Берем бумажную ленту АВСD. Прикладываем ее концы АВ и СD друг к другу и склеиваем. Но не как попало, а так, чтобы точка А совпала с точкой D, а точка B с точкой С. А В С D

Получим такое перекрученное кольцо

Зададимся вопросом: сколько сторон у этого куска бумаги? Две, как у любого другого? А ничего подобного. У него ОДНА сторона. Не верите? Хотите – проверьте: попробуйте закрасить это кольцо с одной стороны.

Красим, не отрываемся, на другую сторону не переходим. Красим... Закрасили? А где же вторая, чистая сторона? Нету? Ну то-то.

Теперь второй вопрос. Что будет, если разрезать обычный лист бумаги? Конечно же, два обычных листа бумаги. Точнее, две половинки листа. А что случится, если разрезать вдоль посередине это кольцо (это и есть лист Мёбиуса, или лента Мёбиуса) по всей длине? Два кольца половинной ширины? А ничего подобного. А что? Не скажу. Разрежьте сами.

А вот что получилось у меня Лента перекручена два раза

Теперь сделайте новый лист Мёбиуса и скажите, что будет, если разрезать его вдоль, но не посередине, а ближе к одному краю? То же самое? А ничего подобного!

А вот что получилось у меня

А если на три части? Три ленты? А ничего подобного!

Получим два сцепленных кольца. Одно из них вдвое длиннее исходного и перекручено два раза. Второе- лист Мёбиуса, ширина которого втрое меньше, чем у исходного.

Человечек - перевертыш. Вырежьте бумажного человечка и отправьте его вдоль пунктира, идущего посередине листа Мёбиуса.

Он вернулся к месту старта. Но в каком виде! В перевернутом! А чтобы он вернулся к старту в нормальном положении, ему нужно совершить ещё одно «круголистное » путешествие. Проверьте!

Исследуйте дальше эту поразительную (и тем не менее совершенно реальную) одностороннюю поверхность, и вы получите море удовольствия. Это очень успокаивает расстроенные трудными уроками нервы, уверяю вас. Что может быть полезнее Чистого Знания?

Используемая литература: 1.Внеклассная работа по математике В.А.Гусев, А.И.Орлов, А.Л.Розенталь. 2.Математический цветник Ю.А.Данилова. 3.Краткий очерк истории математики. Д. Я. Стройк. Перевод с немецкого и дополнения И.Б.ПОГРЕБЫССКОГО. Ресурсы: D1%82_%D0%9C%D1%91%D0%B1%D0%B8%D1%83 %D1%81%D0%B0http://ru.wikipedia.org/wiki/%D0%9B%D0%B8%D1%81% D1%82_%D0%9C%D1%91%D0%B1%D0%B8%D1%83 %D1%81%D0%B0 5fb6-4fc6-b1a4-6ee7961a0dc1http:// 5fb6-4fc6-b1a4-6ee7961a0dc