Функция. Свойства функции. Автор Шишкова Елена Ивановна ГБОУ СОШ "Школа здоровья" №1115 г.Москвы

Презентация:



Advertisements
Похожие презентации
Шишкова Елена Ивановна ГБОУ СОШ «Школа здоровья» 1115 г.Москвы Функция. Свойства функции.
Advertisements

Функция. Свойства функции.. Числовой функцией называется соответствие ( зависимость ), при котором каждому значению одной переменной сопоставляется по.
Числовой функцией называется соответствие (зависимость), при котором каждому значению одной переменной сопоставляется по некоторому правилу единственное.
Алгебра ПОДГОТОВИЛИ : В.Мустафо Гафуров.И. свойства функции монотонность наибольшее и наименьшее значения непрерывностьчетностьвыпуклостьограниченность.
Алгебра 9 класс Составила учитель математики МОУ СОШ 31 г Краснодара Шеремета И.В.
Свойства функции А - 9. Функция – зависимость одной переменной от другой, при которой каждому значению х соответствует единственное значение функции.
Что такое функция? Функциональная зависимость, или функция, - это такая зависимость между двумя переменными, при которой каждому значению независимой переменной.
Функции и их свойства Автор: Семенова Елена Юрьевна y y = f(x) 0 x МОУ СОШ 5 – «Школа здоровья и развития» г. Радужный.
Функции и их свойства Автор: Семенова Елена Юрьевна y y = f(x) 0 x МОУ СОШ 5 – «Школа здоровья и развития» г. Радужный.
Функция
Числовые функцииЧисловые функции 9 класс 9 класс В реальной жизни мы говорим: «каковы мои функции» или «каковы мои функциональные обязанности», подразумевая.
Свойства функции Алгебра 10 класс Урок – лекция Харитоненко Н.В. МОУ СОШ 3 с.Александров Гай.
Свойства функций Свойства функций Выполнили: Царук Ксения Быкова Ксения Проверила: Сальманова Наталья Ивановна.
Повторение по теме: «Свойства функций и их графики» 1. Что такое функция? 2. Как можно задать функцию? Определение. «Зависимость переменной y от переменной.
Числовые функции и их свойства. - это соответствие, при котором каждому элементу х из множества D по некоторому правилу сопоставляется определенное число.
Свойства функции. Функция y=f(x), x X называется чётной, если для любого х из множества Х выполняется равенство: f(-x)=f(x) График чётной функции симметричен.
Числовые функцииЧисловые функции 9 класс 9 класс В реальной жизни мы говорим: «каковы мои функции» или «каковы мои функциональные обязанности», подразумевая.
Презентация к уроку по алгебре по теме: Функции, их свойства. Чтение графиков функций
Свойства функций. 1)Возрастание и убывание функций. ! Функцию у = f (x) называют возрастающей на множестве Х D (f), если для любых точек х 1.
Презентацию подготовил ученик ФМЛ «А» класса Черний Фёдор 2012.
Транксрипт:

Функция. Свойства функции

4 Определение функции Способы задания функции. График функции. Алгоритм описания свойств функции. Свойства функции. 33

Числовой функцией называется соответствие ( зависимость ), при котором каждому значению одной переменной сопоставляется по некоторому правилу единственное значение другой переменной. Обозначают латинскими ( иногда греческими ) буквами : f, q, h, y, p и т. д. Задание 1. Определите, какая из данных зависимостей является функциональной 1) x y 2) a q 3) x d 4) n f

1. Функция, т. к. каждому значению переменной х ставится в соответствие единственное значение переменной у 2. Не функция, т. к. не каждому значению переменной а ставится в соответствие единственное значение переменной q 3. Не функция, т. к. одному из значений переменной х ставится в соответствие не единственное значение переменной d 4. Функция, т. к. каждому значению переменной n ставится в соответствие единственное значение переменной f 1) x y 2) a q 3) x d 4) n f

- Аналитический ( с помощью формулы ) - Графический - Табличный - Описательный ( словесное описание ) Сила равна скорости изменения импульса х у30-7

Графиком функции f называют множество всех точек ( х ; у ) координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты равны соответствующим значениям функции. Задание 2. Определите, какой из данных графиков является графиком функции Рис.1 Рис.2 Рис.3 Рис.4 у у у у хх хх НЕ ЯВЛЯЮТСЯ графиками функций рис.1, рис. 3,рис. 4

1. Область определения 2. Область значений 3. Нули функции 4. Четность 5. Промежутки знакопостоянства 6. Непрерывность 7. Монотонность 8. Наибольшее и наименьшее значения 9. Ограниченность 10. Выпуклость СВОЙСТВА ФУНКЦИИ Алгоритм описания свойств функции

1. Область определения Область определения функции – все значения, которые принимает независимая переменная. Обозначается : D (f). Пример. Функция задана формулой у = Данная формула имеет смысл при всех значениях х -3, х 3, поэтому D( y )=(- ;-3) U (-3;3) U (3; +)

2. Область значений Область ( множество ) значений функции – все значения, которые принимает зависимая переменная. Обозначается : E (f) Пример. Функция задана формулой у = Данная функция является квадратичной, график – парабола, вершина (0; 9) поэтому E( y )= [ 9 ; +)

Нулем функции y = f (x ) называется такое значение аргумента x 0, при котором функция обращается в нуль : f (x 0 ) = 0. Нули функции - абсциссы точек пересечения с Ох 3. Нули функции x 1,x 2 - нули функции

4. Четность Четная функция Нечетная функция Функция y = f(x) называется четной, если для любого х из области определения выполняется равенство f (-x) = f (x).График четной функция симметричен относительно оси ординат. Функция y = f(x) называется нечетной, если для любого х из области определения выполняется равенство f (-x) = - f (x). График нечетной функции симметричен относительно начала координат.

Промежутки, на которых непрерывная функция сохраняет свой знак и не обращается в нуль, называются промежутками знакопостоянства. y > 0 (график расположен выше оси ОХ) при х (- ; 1) U (3; +), y

Функция называется непрерывной на промежутке, если она определена на этом промежутке и непрерывна в каждой точке этого промежутка. Непрерывность функции на промежутке Х означает, что график функции на всей области определения сплошной, т. е. не имеет проколов и скачков. Задание. Определите, на каком из рисунков изображен график непрерывной функции. 12 подумай правильно

Функцию у = f ( х ) называют возрастающей на множестве Х, если для любых двух точек х 1 и х 2 из области определения, таких, что х 1 < х 2, выполняется неравенство f ( х 1 ) < f ( х 2 ). Функцию у = f (х) называют убывающей на множестве Х, если для любых двух точек х 1 и х 2 из области определения, таких, что х 1 < х 2, выполняется неравенство f (х 1 ) >f (х 2 ). x1x1 х1х1 x2x2 f(x 2 ) f(x 1 ) x2x2 x1x1 x2x2 f(x 2 ) f(x 1 )

Число m называют наименьшим значением функции у = f ( х ) на множестве Х, если : 1) в области определения существует такая точка х 0, что f ( х 0 ) = m. 2) всех х из области определения выполняется неравенство f ( х ) f ( х 0 ). Число M называют наибольшим значением функции у = f ( х ) на множестве Х, если : 1) в области определения существует такая точка х 0, что f ( х 0 ) = M. 2) для всех х из области определения выполняется неравенство f ( х ) f ( х 0 ).

Функцию у = f ( х ) называют ограниченной снизу на множестве Х, если все значения функции на множестве Х больше некоторого числа. Функцию у = f (х) называют ограниченной сверху на множестве Х, если все значения функции на множестве Х меньше некоторого числа. х у х у

Функция выпукла вниз на промежутке Х если, соединив любые две точки ее графика отрезком прямой, мы обнаружим, что соответствующая часть графика лежит ниже проведенного отрезка. Функция выпукла вверх на промежутке Х, если соединив любые две точки ее графика отрезком прямой, мы обнаружим, что соответствующая часть графика лежит выше проведенного отрезка.

1. Мордкович А. Г. Алгебра и начала математического анализа классы. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений ( базовый уровень ) / А. Г. Мордкович. 10- е изд., стер. М. : Мнемозина, Картинка с сайта : Сова gif 01.gif