МНОГОЧЛЕНЫ Сумма и разность многочленов Многочлен и его стандартный вид Сложение и вычитание многочленов Произведение одночлена и многочлена Умножение.

Презентация:



Advertisements
Похожие презентации
МногочленыМногочлены. Многочленом называется алгебраическая сумма одночленов. 3a 3 b + 4xy многочлен члены многочлена.
Advertisements

1. Разложение многочлена на множители – это В) представление многочлена в виде произведения двух или нескольких многочленов. 2.Представление многочлена.
Многочлен. Основные понятия. Сложение и вычитание. Умножение и деление. Алгебра 7 класс
Многочлены Определение Многочлен стандартного вида Степень многочлена Сумма и разность многочленов Произведение одночлена и многочлена Произведение многочленов.
Многочлен Алгебра 7 класс Учитель: Ерёмина В.А. СЛОЖЕНИЕ И ВЫЧИТАНИЕ МНОГОЧЛЕНОВ. СЛОЖЕНИЕ И ВЫЧИТАНИЕ МНОГОЧЛЕНОВ. (x3+5x2-x+8)(x3+5x2-x+8) - (x 3 -7x-1)=
Способы разложения на множители: 1.Вынесение общего множителя за скобкиВынесение общего множителя за скобки 2.Способ группировкиСпособ группировки 3.С.
Действия над одночленами и многочленами. Проверка домашнего задания 286(4) 269(2) Если, то.
ГИА Модуль «АЛГЕБРА» 7 Многочлены. Алгебраические выражения.
1. Найти общий множитель среди чисел; 2. Найти общий множитель среди букв; 3. Записать общий множитель и открыть скобку; 4. В скобке записать результат.
Разложение квадратного трехчлена на множители Квадратным трехчленом называется многочлен второй степени, состоящий из трех членов.многочлен второй степени.
« Путешествие в мир одночленов и многочленов». образовательная развивающая воспитательная Систематизировать знания и создать условия контроля (самоконтроля,
Урок – практикум по теме «Одночлены и многочлены» МБОУ СОШ 2. г. Кимовск. Учитель математики Силаева М.О.
Модуль «АЛГЕБРА» 7 «Преобразование алгебраических выражений»
Сложение многочленов Если перед скобками стоит знак «плюс», то… Ответ: члены, стоящие в скобках своих знаков не меняют. Пример: 3 х+(2 а-5)=3 х+2 а-5.
Умножение одночлена на многочлен И. А. Притуло. Что мы знаем? O Определение многочлена Определение многочлена O Подобные члены многочлена Подобные члены.
716(в,г) an 2 +cn 2 -ap+ap 2 -cp+cp 2 =(an 2 -ap+ap 2 )- (cn 2 -cp+cp 2 )=a(n 2 -p+p 2 )-c(n 2 -p+p 2 )=(n 2 - p+p 2 )(a-c) xy 2 -by 2 -ax+ab+y 2 -a=(xy.
Разложение на множители Итоговый урок Учитель МОУ СОШ 10 г.Сочи Боклаг Валентина Николаевна.
Способ группировки Демонстрационный материал 7 класс Все права защищены. Copyright(c) Copyright(c)
Тест «Разложение на множители» 7 класс Подготовила учитель математики МКОУ «Пушкарская средняя общеобразовательная школа» Кореневского района Курской области.
Что называется одночленом? Какие действия с одночленами можно выполнять?
Транксрипт:

МНОГОЧЛЕНЫ Сумма и разность многочленов Многочлен и его стандартный вид Сложение и вычитание многочленов Произведение одночлена и многочлена Умножение одночлена на многочлен Вынесение общего множителя за скобки Произведение многочленов Умножение многочлена на многочлен Разложение многочлена на множители способом группировки

Сумма и разность многочленов Многочлен и его стандартный вид Сумма и разность многочленов Многочлен и его стандартный вид Многочленом называется сумма одночленов Многочленом называется сумма одночленов 4xz-5xy+3x-1 4xz-5xy+3x-1 одночлены, из которых составлен многочлен, называют - членами многочлена. Так. Членами многочлена 4xz-5xy+3x-1 является 4xz, -5xy, 3x и -1. Если многочлен состоит из двух членов, его называют двучленом, если из трёх членов- трёхчленом. Одночлен считают многочленом, состоящим из одного члена. В многочлене 5аz+2+4ab-3az-7 члены 5az и -3az является подобными слагаемыми, так как они имеют одну и ту же буквенную часть. Подобными слагаемыми является и члены 2 и -7, не имеющие буквенную часть. одночлены, из которых составлен многочлен, называют - членами многочлена. Так. Членами многочлена 4xz-5xy+3x-1 является 4xz, -5xy, 3x и -1. Если многочлен состоит из двух членов, его называют двучленом, если из трёх членов- трёхчленом. Одночлен считают многочленом, состоящим из одного члена. В многочлене 5аz+2+4ab-3az-7 члены 5az и -3az является подобными слагаемыми, так как они имеют одну и ту же буквенную часть. Подобными слагаемыми является и члены 2 и -7, не имеющие буквенную часть.

Сложение и вычитание многочленов Если перед скобками ставится знак «плюс», то члены, которые заключают в скобки, записывают с теми же знаками. Если перед скобками ставится знак «плюс», то члены, которые заключают в скобки, записывают с теми же знаками. (5x+7b-9)+(-3x-6b+8)=5x+7b-9-3x-6b+8=2x+b-1 (5x+7b-9)+(-3x-6b+8)=5x+7b-9-3x-6b+8=2x+b-1 Если перед скобками ставится знак «минус», то члены, заключаемые в скобки, записывают с противоположными знаками. Если перед скобками ставится знак «минус», то члены, заключаемые в скобки, записывают с противоположными знаками. (x+5c-b+8)-(x-7b-1)=x+5c-b+8-x+7b+1=5c+6b+9 (x+5c-b+8)-(x-7b-1)=x+5c-b+8-x+7b+1=5c+6b+9

Произведение одночлена и многочлена Умножение одночлена на многочлен Произведение одночлена и многочлена Умножение одночлена на многочлен Чтобы умножить одночлен на многочлен, нужно умножить этот одночленна на каждый член многочлена и полученные произведения сложить. Чтобы умножить одночлен на многочлен, нужно умножить этот одночленна на каждый член многочлена и полученные произведения сложить. -3x+2x(b+8)=-3x+2xb+16x=19x-3x -3x+2x(b+8)=-3x+2xb+16x=19x-3x

Вынесение общего множителя за скобки П Представление многочлена в виде произведения двух или нескольких многочленов называют – разложением многочлена на множители. -15xy-30xyz+45bxy=-15xy(1+2z-3b) Применённый способ разложения на множители называют – вынесением общего множителя за скобки.

Произведение многочленов Умножение многочлена на многочлен Произведение многочленов Умножение многочлена на многочлен Ч Чтобы умножить многочлен на многочлен, нужно каждый член одного многочлена умножить на каждый член другова многочлена и полученные произведения сложить. Умножим многочлен a+b на многочлен c+d. Составим произведение этих многочленов. (a+b)(c+d)=ac+ad+bc+bd.

Разложения многочлена на множители способом группировки Разложим на множители многочлен ab-2b+3a-6 cгруппируем его члены так, чтобы слагаемые в каждой группе имели общий множитель: ab-2b+3a-(ab-2b)+(3a-6) В первой группе вынесем за скобки множитель b, а во второй –множитель 3: (ab-2b)+(3a-6)=b(a-2)(a-2) каждое слагаемое получившегося выражения имеет множитель a-2. Вынесем за скобки. b(a-2)+3(a-2)=(a-2)(b+3) Способ с помощью которого мы разложили многочлен на множители, называют – способом группировки.