Задачи на построение сечений. Цель работы: Развитие пространственных представлений. Задачи: 1.Познакомить с правилами построения сечений. 2.Выработать.

Презентация:



Advertisements
Похожие презентации
Построение сечений тетраэдра и параллелепипеда.. Содержание: 1.Цели и задачи.Цели и задачи. 2.Введение.Введение. 3.Понятие секущей плоскости.Понятие секущей.
Advertisements

Построение сечений тетраэдра и параллелепипеда © Ткачева Виктория Викторовна, учитель математики школы 183 с углубленным изучением английского языка. Санкт-Петербург,
Построение сечений тетраэдра и параллелепипеда Подготовил : Михеев Никита 10 «Б»
Построение сечений тетраэдра и параллелепипеда.. Содержание: 1.Цели и задачи.Цели и задачи. 2.Введение.Введение. 3.Понятие секущей плоскости.Понятие секущей.
Секущей плоскостью параллелепипеда (тетраэдра) называется любая плоскость, по обе стороны от которой имеются точки данного параллелепипеда (тетраэдра).
Построение сечений многогранника. 1.Определение сечения. 2.Правила построения сечений. 3.Виды сечений тетраэдра. 4.Виды сечений параллелепипеда. 5.Задача.
Образовательный центр «Нива» Задачи на построение сечений.
научиться решать простейшие задачи на построение сечений тетраэдра и параллелепипеда.
Тетраэдр и параллелепипед. Выполнила: Рябкова Ю.И.
Урок 2 10 класс стереометрия Тема: «Тетраэдр и его сечение». 10 класс Учитель математики : Юстинская И. С.
Определение сечения. Секущей плоскостью многогранника назовем любую плоскость, по обе стороны от которой имеются точки данного многогранника. Секущая.
ПОСТРОЕНИЕ СЕЧЕНИЙ ТЕТРАЭДРА И ПАРАЛЛЕЛЕПИПЕДА. Определения Секущая плоскость тетраэдра (параллелепипеда) - любая плоскость, по обе стороны от которой.
Построение сечений параллелепипеда. При этом необходимо учитывать следующее: 1. Соединять можно только две точки, лежащие в плоскости одной грани. Для.
Выполнили: Салина Анна Стебнева Кристина ученицы 10Б класса ГБОУ СОШ «Образовательный центр п.г.т. Рощинский Руководитель: учитель высшей квалификационной.
Задачи на построение сечений тетраэдра и параллелепипеда Геометрия, 10 класс.
Построение сечений тетраэдра. Секущая плоскость Точки тетраэдра лежат по обе стороны от плоскости.
Задачи на Построение сечений куба А B С D D1D1 С1С1 B1B1 А1А1 F Е.
Сечения тетраэдра и параллелепипеда Многоугольник, сторонами которого являются отрезки по которым секущая плоскость пересекает грани многогранника, назавается.
Презентация к уроку геометрии (10 класс) по теме: Сечение многогранников (10 класс)
Построение сечений многогранников геометрия 10 класс Выполнил: Старёв А. Е. МОУ «Судская средняя общеобразовательная школа 2» Череповецкого района.
Транксрипт:

Задачи на построение сечений

Цель работы: Развитие пространственных представлений. Задачи: 1.Познакомить с правилами построения сечений. 2.Выработать навыки построения сечений тетраэдра и параллелепипеда при различных случаях задания секущей плоскости. 3.Сформировать умение применять правила построения сечений при решении задач по темам «Многогранники».

Для решения многих геометрических задач необходимо строить сечения многогранников различными плоскостями.

Понятие секущей плоскости Секущей плоскостью параллелепипеда (тетраэдра) называется любая плоскость, по обе стороны от которой имеются точки данного параллелепипеда (тетраэдра).

Многоугольник, сторонами которого являются данные отрезки, называется сечением тетраэдра (параллелепипеда). Понятие сечения многогранника Секущая плоскость пересекает грани тетраэдра (параллелепипеда) по отрезкам.

Работа по рисункам Сколько плоскостей можно провести через выделенные элементы? Какие аксиомы и теоремы вы применяли?

Для построения сечения нужно построить точки пересечения секущей плоскости с ребрами и соединить их отрезками.

1. Соединять можно только две точки, лежащие в плоскости одной грани. 2. Секущая плоскость пересекает параллельные грани по параллельным отрезкам. Правила построения сечений

3. Если в плоскости грани отмечена только одна точка, принадлежащая плоскости сечения, то надо построить дополнительную точку. Для этого необходимо найти точки пересечения уже построенных прямых с другими прямыми, лежащими в тех же гранях. Правила построения сечений

Построение сечений тетраэдра

В сечениях могут получиться ЧетырехугольникиТреугольники Тетраэдр имеет 4 грани

D AB C Построить сечение тетраэдра DABC плоскостью, проходящей через точки M,N,K D A B C MN K 1.Проведем прямую через точки М и К, т.к. они лежат в одной грани (АDC). 2. Проведем прямую через точки К и N, т.к. они лежат в одной грани (СDB). 3. Аналогично рассуждая, проводим прямую MN. 4. Треугольник MNK – искомое сечение.

Построить сечение тетраэдра плоскостью, проходящей через точку М параллельно АВС. С А ВDМ К Р 1.Проведем через точку М прямую параллельную ребру AB 2. Проведем через точку М прямую параллельную ребру AC 3. Проведем прямую через точки K и P, т.к. они лежат в одной грани (DBC) 4. Треугольник MPK – искомое сечение.

Построить сечение тетраэдра плоскостью, проходящей через точки E, F, K. E F K L A B C D M 1. Проводим КF. 2. Проводим FE. 3. Продолжим EF, продол- жим AC. 5. Проводим MK. 7. Проводим EL EFKL – искомое сечение 6. MK AB=L 4. EF AC =М

Построить сечение тетраэдра плоскостью, проходящей через точки E, F, K E F K L A B C M D Какие точки можно сразу соединить? С какой точкой, лежащей в той же грани можно соединить полученную дополнительную точку? Какие прямые можно продолжить, чтобы получить дополнительную точку ? F и K, Е и К ЕК и АС С точкой F Соедините получившиеся точки, лежащие в одной грани, назовите сечение. ЕLFK

E F L A B C D О Построить сечение тетраэдра плоскостью, проходящей через точки E, F, K. K

Вывод: независимо от способа построения сечения одинаковые

Построение сечений параллелепипеда

Четырехугольники Треугольники Шестиугольники Пятиугольники В его сечениях могут получиться Тетраэдр имеет 6 граней

А В С D А1А1 В1В1 С1С1 D1 Х Построить сечение параллелепипеда плоскостью проходящей через точку Х параллельно плоскости (ОСВ) Y S Z 2. Через точку X прямую параллельную ребру D1D 1. Проведем через точку X прямую параллельную ребру D1C1 3. Через точку Z прямую параллельную ребру DC 4. Проведем прямую через точки S и Y, т.к. они лежат в одной грани (BB1C1) XYSZ – искомое сечение

A1A1 А В В1В1 С С1С1 D D1D1 Построить сечение параллелепипеда плоскостью, проходящей через точки M,A,D М 1. AD 2. MD 3. ME//AD, т.к. (ABC)//(A 1 B 1 C 1 ) 4. AE 5. AEMD – искомое сечение E

Построить сечение параллелепипеда плоскостью, проходящей через точки М, К, Т М К Т Х N R S

Выполните задания самостоятельно Д м к т м к т Постройте сечение: а) параллелепипеда; б) тетраэдра плоскостью, проходящей через точки М, Т, К.

Использованные ресурсы Соболева Л. И. Построение сечений Ткачева В. В. Построение сечений тетраэдра и параллелепипеда Гобозова Л. В. Задачи на построение сечений DVD-диск. Уроки геометрии Кирилла и Мефодия. 10 класс, 2005 Обучающие и проверочные задания. Геометрия. 10 класс (Тетрадь)/Алешина Т.Н. – М.: Интеллект-Центр, 1998