Применение теоремы Пифагора и пифагоровых троек для решения геометрических задач. Автор: Линдфуйт Наталья, ученица 9 класса Руководитель: Лонская Татьяна.

Презентация:



Advertisements
Похожие презентации
Соотношения в прямоугольном треугольнике. МБОУ гимназия 3 г. Мурманска Шахова Татьяна Александровна.
Advertisements

Исторический экскурс Рассказ о Пифагоре Пифагор жил в VI в. до н. э. в Древней Греции Основал философскую школу – пифагорейский союз.
Теорема Пифагора Выполнил ученик 8а класса Рякин Илья.
Соотношение между сторонами и углами в прямоугольном треугольнике урок для 8 класса.
Делимость чисел Автор: Бударецкий Станислав ученик 10а класса СОШ 3 с УИОП г. Усинска Учитель: Акбулатова Н.В.
Соотношение между сторонами и углами в прямоугольном треугольнике урок для 8 класса.
ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ПОДГОТОВКА К ЕГЭ ЗАДАНИЕ В4.
РЕШЕНИЕ ТРЕУГОЛЬНИКОВ 1 Решение треугольников Геометрия9 класс.
Составитель: Долгушина И.Г.. Теорема: Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.
Содержание 1.Определение. Теорема Пифагора.Определение. Теорема Пифагора. 2.Основные пифагоровы треугольники. Определение.Основные пифагоровы треугольники.
ПИФАГОР ПИФАГОР САМОССКИЙ - Древнегреческий философ, религиозный и политический деятель, основатель пифагореизма, математик. Пифагору приписывается изучение.
Карточки - задания по теме "Конус"
Алгебра 8 классВсего – 102 часа (по 3 ч. в неделю)
Урок: геометрия Класс: 8 Учитель: Садовникова Т.А. Учебник: А.Г.Атанасян Год издания 2011.
Многочлены. Решение олимпиадных задач по теме «Многочлены» Выполнила ученица 10 класса Б МБОУ лицея 1 Пщегорская Наталья.
Квадратные корни Оглавление: 1.Задача о нахождении стороны квадратаЗадача о нахождении стороны квадрата 2.Иррациональные числаИррациональные числа 3.Теорема.
Различные способы доказательства теоремы Пифагора Автор: Кормишин Алексей, 8 класс Руководитель: Мещерякова Г. В., учитель.
А В С Составил : Ученик 11 Б класса Стригин Женя..
Исследовательская работа по геометрии на тему: Презентацию выполнила: Медведева Татьяна Научный руководитель: Смотрина В. П. Государственное общеобразовательное.
Пифагор и его Великая Теорема. * Пифагор Самосский (др.-греч. Πυθαγόρας Σάμιος, лат. Pythagoras; гг. до н. э.) древнегреческий философ, математик.
Транксрипт:

Применение теоремы Пифагора и пифагоровых троек для решения геометрических задач. Автор: Линдфуйт Наталья, ученица 9 класса Руководитель: Лонская Татьяна Александровна, учитель математики

Объект исследования: Теорема Пифагора и пифагоровы тройки. Предмет исследования: Применение пифагоровых троек для быстрого решения геометрических задач.

Цель: Собрать сведения о пифагоровых тройках и их применения для решения практических задач курса геометрии и задач ЕГЭ типа В 4.. Гипотеза: Мы сможем найти способы быстрого решения геометрических задач и заданий ЕГЭ типа В 4, если будем знать приемы формирования пифагоровых триад и применять таблицы пифагоровых троек.

Задачи: 1. Показать уникальность открытия Пифагора и дать определение понятия пифагоровых троек. 2. Описать простые способы формирования пифагоровых троек. 3. Проанализировать возможности применения теоремы Пифагора, применения полученных знаний о пифагоровых тройках для их практического применения при решении задач.

Методы исследования: методы теоретического исследования (анализ литературы, поиск источников); анализ ряда задач учебника геометрии 7-9 класса; методы эмпирического исследования (изучение опыта решения геометрических задач, нахождение рациональных способов).

Практическая значимость исследования определяется: проведением исследования по проблеме формирования пифагоровых троек (описание простых способов) описанием опыта применения знаний о пифагоровых тройках; разработкой рекомендаций ученикам 8-11 класса при решении задач, материалы исследования могут быть использованы учениками и учителями при преподавании курса геометрии.

Глава 1. Теорема Пифагора и пифагоровы тройки 1.1 Биография Пифагора Пифагор Самосский древнегреческий философ и математик, создатель религиозно- философской школы пифагорейцев

1.3 Пифагоровы тройки и способы их формирования Пифагоровы тройки – это тройки (x, y, z) натуральных чисел x, y, z, для которых выполняется равенство

Способ 1. Обычно пользуются таким приемом подбора решений: произвольные взаимно простые числа m и n, (m,n)=1, m >n одно из них четное, а другое нечетное, и формируют триаду (m²- n²; 2mn; m²+ n²) (1)

Триаду (a, b, c) принято называть примитивной (основной), если a и b – взаимно простые числа, т. е. (a, b) = 1 формула (m²- n²; 2mn; m²+ n²) дает все возможные примитивные триады.

2. Следующий приём возник из наблюдений над некоторыми свойствами триад. а) Пусть первое число триады (длина одного катета) – нечетное, тогда, например, для триады (3; 4; 5) наблюдаем: 3² =4+5, (5; 12; 13) наблюдаем: 5² =12+13, (7; 24; 25) - 7² =24+25 и т. д.

Эти наблюдения показывают приём подбора: взять нечетное число, возвести его в квадрат и результат представить в виде суммы двух последовательных чисел; слагаемые будут вторым и третьим членами триады. Пример: триада (13;84;85), 13² = действительно 13² + 84² = 85².

б) пусть первое число триады – четное. Тогда, например, для триады (3; 4; 5) наблюдаем: 4=2(3+5), для триады (8;15; 17) 8=2(15+17) и т. д. Наблюдения показывают прием подбора: Взять число, кратное 4, его квадрат разделить на 2 и результат представить как сумму двух последовательных нечетных чисел; слагаемые будут вторым и третьим членами триады. Пример: ( 16; 63; 65) 16 ² =2(63+65)

Свойства пифагоровых троек Свойство 1. Числа, входящие в простейшую пифагорову тройку, попарно взаимно просты. Действительно, если два из них, например x и y имеют простой общий делитель p, то из равенства (1) следует, что на p делится и третье число z. Это противоречит тому, что тройка – простейшая. Следствие. В простейшей пифагоровой тройке только одно число может быть чётным. Свойство 2. В простейшей пифагоровой тройке числа x и y не могут быть одновременно нечётными.

Свойство 3. Из данного пифагорова треугольника со сторонами (а, b, с) можно получить бесконечное множество подобных ему треугольников со сторонами (kа, kb, kс), где k – произвольное натуральное число.

Таблица 1. Примитивные пифагоровы тройки для m10 m nabcmnabc

Рассмотрим решение заданий, содержащихся в открытом банке заданий (адрес сайта ).

Задание B4 ЕГЭ В С А

В этом задании сразу угадывается тройка (6, 8, 10). Остается только по рисунку определить отношение противолежащего катета углу А к прилежащему. tgA= 6/10= 0,6

Решение: Быстрый способ решения основан на понимании того факта, что синус угла это есть отношение сторон треугольника и следовательно стороны его можно задать как АВ = 8х, ВС (противолежащий катет) = 7х, АС = 15. По теореме Пифагора, решая уравнение найдем х = 1 и тогда гипотенуза АВ = 8.

При решении заданий обращаем внимание, на то что подсказкой для использования той или иной «тройки» является значение синуса, косину и тангенса, обязательно необходим чертеж для решения заданий.

Заключение Пифагоровы тройки находят прямое применение в проектировании множества вещей, окружающих нас в повседневной жизни. А умы учёных продолжают искать новые варианты доказательств теоремы Пифагора.

Спасибо за внимание