Цели и задачи Целью нашего проекта является всесторонний анализ понятия «софизма», установление связи между софистикой и математикой, влияние софизмов.

Презентация:



Advertisements
Похожие презентации
СОФИЗМЫ Автор: учитель математики Мариупольской школы 41 Белецкая Е.В.
Advertisements

МАТЕМАТИЧЕСКИЕ СОФИЗМЫ Выполнили: Хальфутдинова Эльвира; Миколюк Наталья, ученицы 11 б класса Ханты – Мансийский автономный округ – Югра Городской округ.
« Не мыслям учим, а учим мыслить » Э. Кант. Данная работа открывает перед учащимися уникальную возможность проследить как математические софизмы приучают.
Графический способ решения систем уравнений Предмет математики настолько серьезен, что полезно не упустить случая сделать его немного занимательным. Б.
Софизмы в математике Руководитель проекта Москвичёва В.Н. Автор проекта Самохина Маргарита ученица 7 «А» класса МБОУ Дубровская 2 СОШ.
Тема: «Софизмы» Работу выполнили ученицы 10 класса МОУ СОШ 103 Есаян Эльмирна и Папоян Сатеник Руководитель: Салова Татьяна Алексеевна.
МАТЕМАТИЧЕСКИЕ СОФИЗМЫ Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа 84» Работу выполнила: Вотякова Мария -
Ребята, мы с вами познакомились с множеством иррациональных чисел. Так вот если множество рациональных чисел объединить с множеством иррациональных, то.
Парадоксы и софизмы в математике Руководитель проекта: Мысливец Раиса Борисовна учитель математики Жуховичской гимназии Автор ы проекта: Ломоносов Сергей.
Числовые множества 4. Какие виды чисел использует современная математика Ознакомившись с материалом данной презентации, вы узнаете: 1. Что такое аксиома,
Производная функции. Геометрический смысл производной. учитель математики ГОУ СОШ 223 Платова Н.Ю.
Ж УРНАЛ «К ВАНТЁНОК » Журнал 5 «б» класса гимназии 64 им. В. А. Котельникова г. Липецка.
Введение Пределы и непрерывность 1. Определение предела функции. 2. Односторонние пределы. 3. Бесконечно малые и бесконечно большие. 4. Теоремы о пределах.
ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ. Множества Для любых объектов м множество этих объектов обозначается через. Следует отметить, что объект а и множество {а} -
Познакомившись с действительными числами, узнав об их свойствах, мы научились проводить различные арифметические операции над ними, такие как алгебраические.
ЛЕКЦИЯ 2 по дисциплине «Математика» на тему: «Производные функций. Правила дифференцирования. Дифференциал функции» для курсантов I курса по военной специальности.
Математические софизмы
МАТЕМАТИЧЕСКИЕ СОФИЗМЫ работа ученицы 5 класса Симурзиной Дарьи.
Софизмы и парадоксы Подготовил: учитель математики филиала МКОУ СОШ с.Святославка в с. Воздвиженка Сергадеев А.В.
Предел функции Лекция 1. Ведение в Математический анализ – часть математики, в которой функции и их обобщения изучаются с помощью пределов. § Понятие.
Транксрипт:

Цели и задачи Целью нашего проекта является всесторонний анализ понятия «софизма», установление связи между софистикой и математикой, влияние софизмов на развитие логики. Мы поставили перед собой задачи: 1. Узнать: что же такое софизм? как найти ошибку во внешне безошибочных рассуждениях? критерии классификации софизмов. 2. Составить сборник задач на софизмы по различным разделам математики для 6-10 классов.

Что такое софизм? Софизм - преднамеренная ошибка, совершаемая с целью запутать противника и выдать ложное суждение за истинное.

Немного из истории софизма Софизмы существуют и обсуждаются более двух тысячелетий, причем острота их обсуждения не снижается с годами.

Немного из истории софизма Возникновение софизмов обычно связывается с философией софистов, которая их обосновывала и оправдывала. Термин софизм впервые ввел Аристотель, охарактеризовавший софистику как мнимую, а не действительную мудрость.

Софизм «Мёд» Скажи, обращается софист к молодому любителю споров, может одна и та же вещь иметь какое-то свойство и не иметь его? Очевидно, нет. Посмотрим. Мед сладкий? Да. И желтый тоже? Да, мед сладкий и желтый. Но что из этого? Значит, мед сладкий и желтый одновременно. Но желтый это сладкий или нет? Конечно, нет. Желтый это желтый, а не сладкий. Значит, желтый это не сладкий? Конечно. О меде ты сказал, что он сладкий и желтый, а потом согласился, что желтый значит не сладкий, и потому как бы сказал, что мед является сладким и не сладким одновременно. А ведь вначале ты твердо говорил, что ни одна вещь не может и обладать и не обладать каким-то свойством.

Софизм «Учеба» The more you study, the more you know The more you know, the more you forget The more you forget, the less you know The less you know, the less you forget The less you forget, the more you know So why study?

Классификация ошибок Логические Терминологические Психологические причины

Логические ошибки Так как обычно вывод может быть выражен в силлогистической форме, то и всякий софизм может быть сведён к нарушению правил силлогизма.

Терминологические ошибки Неточное или неправильное словоупотребление и построение фразы, более сложные софизмы проистекают из неправильного построения целого сложного хода доказательств, где логические ошибки являются замаскированными неточностями внешнего выражения.

Психологические ошибки Правдоподобность софизма зависит от ловкости того, кто защищает его, и уступчивости оппонента, а эти свойства зависят от различных психологических особенностей обеих индивидуальностей.

Формула успешности софизма Успешность софизма определяется следующей формулой: a + b + c + d + e + f, где (a + с + е) составляет показатель силы диалектика, (b + d + f) есть показатель слабости его жертвы. –а - отрицательные качества лица (отсутствие развития способности управлять вниманием). –b - положительные качества лица (способность активно мыслить) –с - аффективный элемент в душе искусного диалектика –d - качества, которые пробуждаются в душе жертвы софиста и омрачают в ней ясность мышления –е - категоричность тона, не допускающего возражения, определённая мимика –f - пассивность слушателя

«Предмет математики настолько серьёзен, что полезно не упускать случая, делать его немного занимательным», - писал выдающийся ученый XVII века Блез Паскаль.

Сборник задач Алгебраические софизмы Геометрические софизмы Тригонометрические софизмы

Алгебраические софизмы Все числа равны между собой Докажем, что 5=6. Запишем равенство: = Вынесем за скобку общие множители: 5(7+2-9)=6(7+2-9). Разделим обе части этого равенства на общий множитель (он заключен в скобки): 5(7+2-9)=6(7+2-9). Значит, 5=6.

Геометрические софизмы Рассмотрим треугольник ABC. Проведем прямую MN параллельно AB так, как показано на рисунке. Теперь для любой точки L стороны AB проведем прямую CL, которая пересечет MN в точке K. Таким образом установим однозначное соответствие между отрезками AB и MN, т.е. они оба содержат одинаковое количество точек. Значит, имеют одинаковую длину.

Тригонометрические софизмы Бесконечное большое число равно нулю Если острый угол увеличивается. Приближаясь к 900 как к пределу, то его тангенс, как известно, неограниченно растёт по абсолютной величине, оставаясь положительным: tg90 0 = +. (1) Но если взять тупой угол и уменьшить его, приближая к 900 как к пределу, то его тангенс, оставаясь отрицательным, также неограниченно растёт по абсолютной величине: tg90 0 = -. (2). Сопоставим формулы (1) и (2): - = = 0 = 0

Заключение Рассмотрев софизмы, мы узнали многое из мира логики. Даже небольшое представление о софизмах значительно расширяет кругозор. Многие вещи, кажущиеся сначала необъяснимыми, выглядят совсем по-иному. Жаль, что в школьном курсе математики не изучаются основы логики. Логическое мышление ключ к пониманию происходящего, недостаток его сказывается во всем.