ПОДГОТОВИЛИ: УЧЕНИЦЫ Х «А» КЛАССА ЗАЦЕПИНА ЕКАТЕРИНА; ПАВЛОВА ЮЛИЯ. Аксиомы стереометрии и планиметрии.

Презентация:



Advertisements
Похожие презентации
Аксиомы стереометрии и планиметрии Подготовила: ученица Х «А» класса Зацепина Екатерина.
Advertisements

Учитель математики МБОУ «СОШ31» г. Норильск Шеер Елена Анатольевна.
Отрезок – это часть прямой Которая состоит из всех точек этой прямой, лежащих между двумя данными её точками.
Аксиомы стереометрии. Некоторые следствия из аксиом
А ксиома I: К акова б ы н е б ыла прямая, с уществуют точки, принадлежащие э той прямой, и т очки, н е принадлежащие е й. Через л юбые д ве т очки можно.
А ксиома I: К акова б ы н е б ыла прямая, с уществуют точки, п ринадлежащие этой п рямой, и т очки, не п ринадлежащие е й. Через л юбые д ве т очки можно.
Слайды по геометрии для 10 класса Учитель:Ледовская О.М.
Простейшие геометрические фигуры Выполнил Коротовский Саша 9 «А»
Урок 6 Аксиомы откладывания и измерения отрезков и углов.
А α, В α ЭЭ АВ А,В=αА,В=α α α А В АВС АВ АВ > 0.
Методическая разработка по геометрии (10 класс) по теме: Учебная презентация к уроку геометрии в 10 классе "Аксиомы стереометрии"
Аксиомы стереометрии и их простейшие следствия.. Геометрия Планиметрия Объекты: точка прямая Стереометрия Объекты: точка прямая плоскость.
Ксиомы Сборник. Проект Айларовой Ирины. Общее значение. Аксиомами называются утверждения, содержащиеся в формулировках основных свойств простейших фигур.
Аксиомы планиметрии. 1.Каждой прямой принадлежат по крайней мере две точки.
5.09 Геометрия – 7 класс. Начальные геометрические сведения Существуют точки, принадлежащие прямой и не принадлежащие ей.
Урок 3 Измерение и откладывание отрезков и углов..
Что такое стереометрияЧто такое стереометрия? Аксиомы стереометрии Аксиомы стереометрии ; Некоторые следствия аксиом стереометрии: 1. Теорема 14.1;Теорема.
Аксиомы планиметрии. Учитель МОУСОШ с. Ленино Кузнецова Е.Н.
R1R2R3R4R5R6R7R1R2R3R4R5R6R7. Аксиома R 1. В пространстве существуют плоскости. В каждой плоскости пространства выполняются все аксиомы планиметрии.
Стереометрия – это раздел геометрии, в котором изучаются фигуры в пространстве.
Транксрипт:

ПОДГОТОВИЛИ: УЧЕНИЦЫ Х «А» КЛАССА ЗАЦЕПИНА ЕКАТЕРИНА; ПАВЛОВА ЮЛИЯ. Аксиомы стереометрии и планиметрии

Аксиомы стереометрии.

Аксиома 1(С 1 ): Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей. А α, В α α Α ЭЭ α Α в

Аксиома 2(С 2 ): Если две различные плоскости имеют общую точку, то они пересекаются по одной прямой, проходящей через эту точку. β α А α А β Э Э } α β = m U m А

Аксиома 3(С 3 ): Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну. a b = d a, b, d α U Э d α в a

Аксиомы планиметрии.

Аксиома I: Какова бы не была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей. Через любые две точки можно провести прямую, и только одну. А α, В α ЭЭ АВ А,В=α α α А В

Аксиома II: Из трёх точек на прямой одна и только одна лежит между двумя другими. АВС

Аксиома III: Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой. АВ АВ > 0

Аксиома III: Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой. АВ АC + CВ > 0 C

Аксиома III: Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой. АВ АC+CВ > 0 C

Аксиома IV: Прямая, принадлежащая плоскости, разбивает эту плоскость на две полуплоскости: β и φ β α φ

Аксиома V: Каждый угол имеет определённую градусную меру, большую нуля. Развёрнутый угол равен 180°. Градусная мера угла равна сумме, градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами. 180ВА

Аксиома VI: На любой полупрямой от её начальной точки можно отложить отрезок заданной длины, и только один. АВ АВ α Э

Аксиома VII: От полупрямой на содержащей её плоскости в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180°, и только один. φ = 45°< 180° α b φ=45°φ=45°

Аксиома VIII: Каков бы ни был треугольник, существует равный ему треугольник в данной плоскости в заданном расположении относительно данной полупрямой в этой плоскости. α а А ВС А1А1 В1В1 С1С1

Аксиома IX: На плоскости через данную точку, не лежащую на данной прямой, можно провести не более одной прямой, параллельной данной. А α β φ B

Аксиома 1(С1): Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей. А α, В α α Α в ЭЭ Аксиома I: Какова бы не была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей. Через любые две точки можно провести прямую, и только одну. α А В А α, В α ЭЭ АВ А,В=α α

Аксиома 2(С2): Если две различные плоскости имеют общую точку, то они пересекаются по одной прямой, проходящей через эту точку. β α Э Э } α β = m U m А А α А β Аксиома VIII: Каков бы ни был треугольник, существует равный ему треугольник в данной плоскости в заданном расположении относительно данной полупрямой в этой плоскости. α а А ВС А1А1 В1В1 С1С1

Аксиома 3(С3): Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну. Аксиома IX: На плоскости через данную точку, не лежащую на данной прямой, можно провести не более одной прямой, параллельной данной. a b = d a, b, d α U Э d α в a А α β φ B