Э КСПЕРТ. О БЩИЕ ПОДХОДЫ К ФОРМИРОВАНИЮ КРИТЕРИЕВ ОЦЕНИВАНИЯ Бельская О.А., учитель математики МОУ «Иланская СОШ 1», руководитель РМЦ УМ, председатель.

Презентация:



Advertisements
Похожие презентации
Особенности проверки и оценивания второй части экзаменационной работы.
Advertisements

. Оценка уровня общеобразовательной подготовки по алгебре учащихся IX классов общеобразовательных учреждений с целью их государственной (итоговой) аттестации.
МАТЕМАТИКА ГОСУДАРСТВЕННАЯ ИТОГОВАЯ АТТЕСТАЦИЯ ПО АЛГЕБРЕ ВЫПУСКНИКОВ IX КЛАССОВ В НОВОЙ ФОРМЕ В 2012 ГОДУ.
Памятка для экспертов Бельская О.А., учитель математики МОУ «Иланская СОШ 1», руководитель РМЦ УМ, председатель ТПК по математике.
О СОБЕННОСТИ ГИА ВЫПУСКНИКОВ, ОСВОИВШИХ ПРОГРАММЫ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ПО МАТЕМАТИКЕ В 2010 ГОДУ.
Тесты Особенности содержания и структуры контрольных измерительных материалов определяются целями, поставленными перед ЕГЭ Цель единого государственного.
Семинар по обучению председателей ТЭК по математике г. Департамент образования и науки Краснодарского края Краснодарский краевой институт дополнительного.
Государственная итоговая аттестация по математике (новая форма) Для экспертов предметных территориальных комиссий по математике.
Материалы для самостоятельной работы экспертов по проверке и оценке выполнения заданий с развернутым ответом Белай Елена Николаевна Старший преподаватель.
Государственная итоговая аттестация обучающихся, освоивших образовательные программы основного общего образования учебный год Войтюк О.В. учитель.
Государственная итоговая аттестация по математике в 2014 г. в форме ОГЭ подготовка экспертов предметных комиссий по проверке выполнения заданий с развернутым.
УЧЕНИКУ ОБ ОТМЕТКАХ ПО МАТЕМАТИКЕ. Оценка письменных работ.
О структуре и системе оценивания ЕГЭ по математике О структуре и системе оценивания ЕГЭ по математике.
Актуальные вопросы оценивания решения задач части 2 экзаменационной работы по математике.
Государственная итоговая аттестация по математике по математике 2011 год.
Итоги пробного ЕГЭ по математике, проведенного в Таганрогском государственном педагогическом институте года.
Состояние математического образования в регионе по результатам ЕГЭ-2008 Скрынникова О.Н., методист ГУ «РЦРО»
Семинар- практикум по решению задач ОГЭ и ЕГЭ для учителей Тюменского муниципального района
Итоги ОГЭ по математике за учебный год..
Анализ ГИА-9 по математике в учебном году.
Транксрипт:

Э КСПЕРТ. О БЩИЕ ПОДХОДЫ К ФОРМИРОВАНИЮ КРИТЕРИЕВ ОЦЕНИВАНИЯ Бельская О.А., учитель математики МОУ «Иланская СОШ 1», руководитель РМЦ УМ, председатель ТПК по математике

2 уровня государственной аттестации ГИА в 9 классе ГИА в 11 классе

«Не может быть такого «Что хочу, то и поставлю!». Это время прошло.» Васильева Е.Н.

Чем же эксперт отличается от учителя?

Э КСПЕРТ Не случайный учитель. Это человек, принявший на себя функции государственного контроля Профессионал, хороший математик Должен знать Свой функционал Основные документы по математике

Т РЕБОВАНИЯ К ВЫПОЛНЕНИЮ ЗАДАНИЙ С РАЗВЕРНУТЫМ ОТВЕТОМ ЗАКЛЮЧАЕТСЯ В СЛЕДУЮЩЕМ : решение должно быть математически грамотным и полным, правильным, из него должен быть понятен ход рассуждений учащегося

При определении шкалы балловых оценок за выполнение заданий опирались на следующие положения: 1) Задания с развернутым ответом рассчитаны на учащихся, способных продемонстрировать следующие умения: синтезировать способ решения задачи, используя для этого знания, полученные при изучении различных разделов курса; обосновать свои последующие действия; безошибочно выполнить соответствующие преобразования и вычисления; учитывать при получении конечного ответа условие задачи. 2) Учащиеся, имеющие хорошую подготовку по предмету, не должны допускать грубых ошибок (геометрических, математических, логических, вычислительных) при выполнении соответствующих построений и математических выкладок. 3) Оценка заданий определяется полнотой и правильностью решения проблемы, поставленной в условии задачи.

присутствием и правильностью приведенной последовательности всех необходимых шагов решения, отвечающих используемому верному методу решения; правильностью обоснования ключевых моментов решения; правильностью выполнения соответствующих построений и вычислений; верным конечным ответом и его соответствием условию задачи. Если решение учащегося отвечает всем этим требованиям, то его можно считать полным и правильным. В этом решении не должно быть описок или ошибок, которые могут привести к неверному ответу. Полнота и правильность решения определяются:

К ГРУБЫМ ОШИБКАМ ОТНОСЯТСЯ ошибки, которые обнаруживают незнание учащимися формул, правил, основных свойств, теорем и неумение их применять;

К НЕГРУБЫМ ОШИБКАМ К НЕДОЧЕТАМ ОТНОСЯТСЯ ОТНОСЯТСЯ вычислительные ошибки, нерациональное решение, описки, недостаточность или отсутствие пояснений, о которых специально упоминается в конкретизированных критериях, разработанных для оценки конкретного задания, а также неточности в обоснованиях, которыми являются замена свойства на определение или признак, неверное название теорем или формул.

Если одна и та же ошибка (недочет) встречается несколько раз, то это рассматривается как одна ошибка (один недочет). Зачеркивания в работе свидетельствуют о поисках решения, что считать ошибкой или недочетом не следует.

В соответствии с моделью оценивания учащийся, демонстрирующий умение решить ту или иную задачу второй части экзаменационной работы, получает установленный балл, или балл, на 1 меньше установленного (в случае, если решение содержит несущественный недочет или даже несущественную ошибку); поэлементное оценивание не предусматривается.

О Б ОПИСКАХ И ГРУБЫХ ОШИБКАХ Одной из важных целей обучения математике является формирование умения ясно, точно, логически грамотно выражать свои мысли, как в устной, так и в письменной форме. Однако цель эта достигается далеко не всегда. «Сочинение» Наряду с работами-сочинениями нередко можно видеть и такие работы, в которых сплошным текстом идут выкладки без выделения каких-либо этапов решения, вообще не содержащих никаких пояснений.

О Б ОПИСКАХ И ГРУБЫХ ОШИБКАХ Неверное употребление математической терминологии и символики: «найдем корни квадратного трехчлена» «решим квадратный трехчлен»; «решим неравенство» «решим уравнение». Можно встретить такое ошибочное выражение, как «построим график прямой».

О Б ОПИСКАХ И ГРУБЫХ ОШИБКАХ Серьезное непонимание существа дела проявляется в неуместном употреблении логических союзов «И» и «ИЛИ» - «путаница» между употреблением этих союзов. Например, результат решения квадратного уравнения записывают так: 2 или 3 (или даже употребляют в этой записи знак совокупности). В то время как задача состоит в нахождении множества корней уравнения, в соответствии с чем требуется перечислить элементы этого множества (а не записывать дизъюнкцию высказываний). Это может быть сделано разными способами, например: х = 2, х = 3; 2 и 3; 2; 3.

О Б ОПИСКАХ И ГРУБЫХ ОШИБКАХ «Путаница» в обозначениях совокупности (квадратная скобка) и системы (фигурная скобка).

О Б ОПИСКАХ И ГРУБЫХ ОШИБКАХ В одной из работ было предложено решить весьма непростую систему двух уравнений с двумя переменными, которой удовлетворяет три пары чисел. Главной проблемой для многих, дошедших практически до конца решения, явилась запись ответа. Они либо не объединяли найденные значения в пары, либо объединяли, путая порядок. Это еще раз свидетельствует об отсутствии понимания существа дела: все преобразования выполнены, а логически решение не завершено.

Рациональность выбранного школьником метода решения задачи не имеет никакого значения: за нерациональность оценка не снижается, а за рациональность не повышается. Учитывается исключительно математическая правильность текста решения.

Ч АСТЬ 2 Задание 17 – 2 балла Задания – 3 балла Задания 20 – 21 – 4 балла

Задание 17 (2 балла). За решение выставляется 1 балл, если оно не содержит ошибок, но при этом не является полным, например, отсутствует ответ на дополнительный вопрос (при его наличии); или: в решении имеется одна описка/ошибка, не влияющая принципиально на ход решения, с ее учетом все дальнейшие шаги выполнены верно, решение доведено до конца. Задания 18 и 19 (3 балла). За решение выставляется 2 балла, если в нем нет ошибок, но при этом оно не является полным, например, отсутствует ответ на дополнительный вопрос (при его наличии); или: ход решения верный, получен ответ, но имеется описка или непринципиальная ошибка (например, ошибка в вычислении), и с ее учетом дальнейшие шаги выполнены верно, решение доведено до конца. Задания 20 и 21 (4 балла). За решение выставляется 3 балла, если решение «почти верное», т.е. ход решения правильный, оно доведено до конца, но при этом имеется одна непринципиальная вычислительная ошибка/описка, с ее учетом дальнейшие шаги выполнены верно; или имеются погрешности в применении символики и терминологии.

В 1- Й ДЕНЬ ПРОВЕРКИ : Договориться об общих позициях, подходах в критериях Если работа не подходит под критерии, то надо исходить из позиции полноты, логики, правильности

В АСИЛЬЕВА Е.Н.: «Не додумывайте за учащихся!»