Метод параллельного проектирования. Изображение пространственных фигур на плоскости. Геометрия, 10 класс. 10 класс. Воробьев Леонид Альбертович, г.Минск.

Презентация:



Advertisements
Похожие презентации
Параллельное проектирование Блинова Наталья 10-А.
Advertisements

Метод параллельного проектирования. Изображение пространственных фигур на плоскости. Геометрия, 10 класс. 10 класс. Воробьев Леонид Альбертович, г.Минск.
Математический диктант: 1.Сколько точек характеризуют прямую? 2.Верно ли, что через любую точку пространства можно провести множество прямых, параллельных.
Презентация к уроку по геометрии (10 класс) по теме: «Проектирование пространственных фигур на плоскость» ( 10 класс)
Изображение пространственных фигур на плоскости Геометрия -10.
Параллельное проектирование Пусть π - некоторая плоскость, l - пересекающая ее прямая. Через произвольную точку A, не принадлежащую прямой l, проведем.
Изображение пространственных фигур на плоскости Геометрия 10 класс В презентации использованы презентации ресурсов Интернета Благодарим авторов за предоставленный.
Теорема Если плоская фигура F лежит в плоскости, параллельной плоскости проектирования π, то ее проекция F на эту плоскость будет равна фигуре F.
Изображение пространственных фигур на плоскости Геометрия -10.
Геометрия, 10 класс Тема: Построение сечений многогранников методом параллельных проекций Воробьев Леонид Альбертович, г.Минск.
Методы изображений Практическое занятие 1 План занятия 1. Требования к изображениям в педагогическом процессе 2. Параллельное проектирование и его свойства.
Презентация к уроку по геометрии (10 класс) на тему: Изображение пространственных фигур на плоскости
ОРТОГОНАЛЬНОЕ ПРОЕКТИРОВАНИЕ Пусть дана плоскость π и точка A пространства. Через точку A проведем прямую a, перпендикулярную плоскости π. Точку пересечения.
ПРЯМОЙ ЦИЛИНДР Пусть в пространстве заданы две параллельные плоскости и. F – круг в одной из этих плоскостей, например. Рассмотрим ортогональное проектирование.
УРОК – СОРЕВНОВАНИЕ ПАРАЛЛЕЛЬНОСТЬПЛОСКОСТЕЙ. ПАРАЛЛЕЛЬНОЕ ПРОЕКТИРОВАНИЕ.
Решение задач с помощью аффинных преобразований. Учитель математики высшей квалификационной категории Подушкина О. Ю. МОУ гимназия 4 Образование индивидуальности.
Четырехугольники Каким одним словом можно назвать эти фигуры? Какое свойство выделяют четырехугольники 2, 3, 4, 6? У этих четырехугольников есть свое.
Русова И. А. учитель математики МОУ СОШ 26. Сечения многогранников Далее.
Многоугольники Рассмотрим фигуру, составленную из отрезков AB, BC, CD, DE, EF, FA так, что смежные отрезки не лежат на одной прямой, а несмежные отрезки.
Урок 4 Ортогональное проектирование. Х параллельная проекция точки Х а задает направление проктирования - плоскость проекций Проекцией фигуры F называется.
Транксрипт:

Метод параллельного проектирования. Изображение пространственных фигур на плоскости. Геометрия, 10 класс. 10 класс. Воробьев Леонид Альбертович, г.Минск

Итак, мы приступили к изучению стереометрии – геометрии в пространстве. Как всегда нам необходимо уметь изображать геометрические фигуры, причем все чертежи мы по-прежнему выполняем на плоскости (на странице тетради, на доске и т.д.). Каким образом пространственную фигуру (например, куб) можно «уложить» в плоскость? Для решения этой задачи применяется метод параллельного проектирования. Выясним его суть на примере простейшей геометрической фигуры – точки. Итак, у нас есть геометрическая фигура в пространстве – точка А. А

А Выберем в пространстве произвольную плоскость (её мы будем называть плоскостью проекций) и любую прямую a ( она задает направление параллельного проектирования). а

А а Проведем через точку А прямую, параллельную прямой а. А Точка А пересечения этой прямой с плоскостью и есть проекция точки А на плоскость. Точку А ещё называют прообразом, а точку А – образом. Если А, то А совпадает с А.

Рассматривая любую геометрическую фигуру как множество точек, можно построить в заданной плоскости проекцию данной фигуры. Таким образом можно получить изображение (или «проекцию») любой плоской или пространственной фигуры на плоскости (см.рис.). а Наглядным примером параллельного проектирования является отбрасываемая любым объектом(прообраз) в пространстве тень(образ) от солнечных лучей(направление параллельного проектирования) на Земле(плоскость проекций).

Примечание 1. При параллельном проектировании не выбирают направление параллельного проектирования параллельно плоскости проекции (самостоятельно обоснуйте почему). А а

Примечание 2. При параллельном проектировании плоских фигур не выбирают направление параллельного проектирования параллельно плоскости, которой принадлежит эта плоская фигура, т.к. получающаяся при этом проекция не отражает свойства данной плоской фигуры. А а B C А B C

Примечание 3. Если направление параллельного проектирования перпендикулярно плоскости проекций, то такое параллельное проектирование называется ортогональным(прямоугольным) проектированием. А а B C А B C

Примечание 4. Если плоскость проекций и плоскость, в которой лежит данная фигура параллельны ( ||(АВС)), то получающееся при этом изображение… А а B C А B C …правильно – равно прообразу!

Параллельное проектирование обладает свойствами: 1) параллельность прямых (отрезков, лучей) сохраняется; а A D C B A D C B

2) отношение длин отрезков, лежащих на параллельных или на одной прямой сохраняется; Параллельное проектирование обладает свойствами: 1)параллельность прямых (отрезков, лучей) сохраняется; а A D C B A D C B Если, например, АВ=2CD, то АВ=2CD или М М

Параллельное проектирование обладает свойствами: 1)параллельность прямых (отрезков, лучей) сохраняется; а A B A B 3) Линейные размеры плоских фигур(длины отрезков, величины углов) не сохраняются (исключение – см. примечание 4). 2) отношение длин отрезков, лежащих на параллельных или на одной прямой сохраняется; β β C C

Итак, построим изображение куба: Далее разберем примеры изображения некоторых плоских фигур…

Фигура в пространствеЕё изображение на плоскости Произвольный треугольник Прямоугольный треугольникПроизвольный треугольник Равнобедренный треугольникПроизвольный треугольник

Фигура в пространствеЕё изображение на плоскости Равносторонний треугольникПроизвольный треугольник ПараллелограммПроизвольный параллелограмм ПрямоугольникПроизвольный параллелограмм

Фигура в пространствеЕё изображение на плоскости Квадрат Произвольный параллелограмм ТрапецияПроизвольная трапеция Произвольный параллелограмм Ромб

Фигура в пространствеЕё изображение на плоскости Равнобокая трапецияПроизвольная трапеция Прямоугольная трапеция Произвольная трапеция Круг (окружность) Овал (эллипс)

A BC D EF O Разберемся, как построить изображение правильного шестиугольника. F A BC D E Разобьем правильный шестиугольник на три части: прямоугольник FBCE и два равнобедренных треугольника ΔFAB и ΔCDE. Построим вначале изображение прямоугольника FBCE – произвольный параллелограмм FBCE. Осталось найти местоположение двух оставшихся вершин – точек A и D. Вспомнив свойства правильного шестиугольника, заметим, что: 1) эти вершины лежат на прямой, проходящей через центр прямоугольника и параллельной сторонам BC и FE; 2) OK=KD и ON=NA. K N Значит, 1) находим на изображении точку О и проводим через неё прямую, параллельную BC и FE, получив при этом точки N и K; O NK 2) откладываем от точек N и K от центра О на прямой такие же отрезки – в итоге получаем две оставшиеся вершины правильного шестиугольника A и D.

A B C DE Попробуйте самостоятельно построить изображение правильного пятиугольника. Подсказка: разбейте фигуру на две части – равнобокую трапецию и равнобедренный треугольник, а затем воспользуйтесь некоторыми свойствами этих фигур и,конечно же, свойствами параллельного проектирования. A C DE Решение. Просмотрите ход построения… B