Содержание: 1.Понятия стереометрии 2. Изображение плоскости 3.Аксиомы стереометрии 4.Следствия из аксиом стереометрии.

Презентация:



Advertisements
Похожие презентации
R1R2R3R4R5R6R7R1R2R3R4R5R6R7. Аксиома R 1. В пространстве существуют плоскости. В каждой плоскости пространства выполняются все аксиомы планиметрии.
Advertisements

Определение. Стереометрия – это раздел геометрии, в котором изучаются фигуры и их свойства в пространстве. Основная фигура стереометрии – плоскость. α.
Аксиомы стереометрии и их простейшие следствия.. Геометрия Планиметрия Объекты: точка прямая Стереометрия Объекты: точка прямая плоскость.
А α, В α ЭЭ АВ А,В=αА,В=α α α А В АВС АВ АВ > 0.
Аксиомы стереометрии Автор: Семенова Елена Юрьевна МОУ СОШ 5 – «Школа здоровья и развития» г.Радужный.
ПАРАЛЛЕЛЬНОСТЬ ПРЯМЫХ И ПЛОСТКОСТЕЙ В ПРОСТРАНСТВЕ Выполнила Ученица 10 и-л класса Кузьмина Татьяна.
Основные понятия и аксиомы стереометрии
Основные понятия Стереометрия, или геометрия в пространстве, – это раздел геометрии, изучающий положение, форму, размеры и свойства различных пространственных.
АКСИОМЫ СТЕРЕОМЕТРИИ Через любые две точки пространства проходит единственная прямая Через любые три точки пространства, не принадлежащие одной прямой,
- Что такое геометрия? Геометрия – наука о свойствах геометрических фигур «Геометрия» - (греч.) – «землемерие» - Что такое планиметрия? Планиметрия –
Стереометрия – это раздел геометрии, в котором изучаются фигуры в пространстве.
Стереометрия ТЕМА: 2.1 АКСИОМЫ СТЕРЕОМЕТРИИ. НЕКОТОРЫЕ СЛЕДСТВИЯ ИЗ АКСИОМ АК ВГУЭС Преподаватель БОЙКО ВЕРА ИВАНОВНА.
Что такое стереометрияЧто такое стереометрия? Аксиомы стереометрии Аксиомы стереометрии ; Некоторые следствия аксиом стереометрии: 1. Теорема 14.1;Теорема.
Творческий проект выполнил: ученик 10 класса МОУ СОШ 22 г.Твери Бербеков Данила "Основные понятия и аксиомы стереометрии. Параллельность прямых и плоскостей"
Презентация по теме: « Аксиомы стереометрии» Выполнила: Дмитрикова Ольга Викторовна Учитель математики МКОУ «Огорская СОШ» С.Огорь Жиздринский район Калужская.
СТЕРЕОМЕТРИЯ - РАЗДЕЛ ГЕОМЕТРИИ, В КОТОРОМ ИЗУЧАЮТСЯ СВОЙСТВА ФИГУР В ПРОСТРАНСТВЕ. ОСНОВНЫЕ ФИГУРЫ В ПРОСТРАНСТВЕ – ТОЧКА ПРЯМАЯ ПЛОСКОСТЬ А а ГЕОМЕТРИЧЕСКИЕ.
Стереометрия Но надо жить без самочванства, Так жить, чтобы в конце концов Привлечь к себе любовь пространства, Услышать будущего зов. Б. Пастернак Б.
УМК ПО ДИСЦИПЛИНЕ МАТЕМАТИКА УМК ПО ДИСЦИПЛИНЕ МАТЕМАТИКА для 1 курса Математический диктант Основные понятия и аксиомы стереометрии ГБОУ СПО «ВОЛГОГРАДСКИЙ.
Тема: Аксиомы стереометрии.. ГЕОМЕТРИЯ ПЛАНИМЕТРИЯСТЕРЕОМЕТРИЯ ( это раздел геометрии, в котором изучаются свойства фигур на плоскости) ( это раздел геометрии,
Образец подписи тетради ТЕТРАДЬ для подготовки к ВОУД по геометрии учени__ ___ класса «__» средней школы 22 г. Костаная _______________________.
Транксрипт:

Содержание: 1.Понятия стереометрии 2. Изображение плоскости 3.Аксиомы стереометрии 4.Следствия из аксиом стереометрии

Система аксиом стереометрии состоит из аксиом планиметрии и трех аксиом стереометрии. В аксиомах стереометрии выражены основные свойства неопределяемых понятий: точки, прямой, плоскости и расстояния. Плоскости - это фигуры, на которых выполняется планиметрия и для которых верны аксиомы стереометрии. Пространство - это множество, элементами которого являются точки и в котором выполняется система аксиом стереометрии, описывающая свойства точек, прямых и плоскостей. Стереометрия – раздел геометрии, в котором изучаются свойства фигур в пространстве

На картинке показаны два общепринятых изображения плоскости. Обозначаются плоскости маленькими греческими буквами: a, b, g,...

Аксиома 1 Существует хотя бы одна прямая и хотя бы одна плоскость. Каждая прямая и каждая плоскость есть не совпадающее с пространством непустое множество точек. а а

Аксиома 2 Через любые две различные точки проходит одна и только одна прямая. А В

Аксиома 3 Прямая, проходящая через две различные точки плоскости, лежит в этой плоскости АВ а

Аксиома 4 Через три точки, не лежащие на одной прямой, проходит одна и только одна плоскость. А В С а

Аксиома 5 Если две различные плоскости имеют общую точку, то их пересечение есть прямая, которая проходит через эту точку. А а β с

Аксиома 6 Д ля любых двух точек А и В имеется неотрицательная величина, называемая расстоянием от А до В. Расстояние от В до А равно нулю в том и только в том случае, если точки А и В совпадают. АВ А В

Аксиома 7 Расстояние от точки А до точки В равно расстоянию от точки В до точки А: АВ=ВА АВ

Аксиома 9 Для каждой плоскости выполняются известные из планиметрии аксиомы порядка, подвижности плоскости и параллельных прямых.

Следствия из аксиом стереометрии 1.Если две точки прямой принадлежат плоскости, то вся прямая принадлежит этой плоскости. АВ n а

2. Плоскость и прямая вне ее либо не имеют общих точек, либо имеют единственную общую точку. е а а м

г. Белгород, 2010 год Работа Асеевой Валерии Учитель Гринякина Валентина Николаевна Материал взят из учебника геометрии