Типы интегральных схем Дополнительный материал по теме:Полупроводники Учитель физики Кюкяйской СОШ Сунтарского улуса Республики Саха Федоров А. М.

Презентация:



Advertisements
Похожие презентации
Типы интегральных схем. p-n переход Полупроводники, из которых изготовляют транзисторы и диоды, разделяются на полупроводники с электронной - n( negative.
Advertisements

Выполнили студенты группы Никитин Н.Н. Дроздов А. В.
Полупроводниковые микросхемы Полупроводниковая ИМС – это микросхема, элементы который выполнены в приповерхностном слое полупроводниковой подложки. Эти.
Устройство полевого транзистора Полевой транзистор - это полупроводниковый прибор, усилительные свойства которого обусловлены потоком основных носителей,
Классификация приборов в микроэлектронике гр М Дементьев Максим Сергеевич Дементьев Максим Сергеевич.
Аженов Алмат Тема лекций: Интегральная схема. Алматы 2013 Казахский национальный университет имени аль-Фараби Факультет механики и математики Кафедра Информатики.
Полупроводниковыми или электропреобразовательными называются приборы, действие которых основано на использовании свойств полупроводников. K полупроводникам.
Компьютерная электроника Лекция 8. Устройство биполярного транзистора.
Полупроводниковые приборы. Стремительное развитие и расширение областей применения электронных устройств обусловлено совершенствованием элементной базы,
ТРАНЗИСТОР 1.Биполярный транзистор. 2.Как работает транзистор. 3.Схема, демонстрирующая принцип работы транзистора. 4.Типы, параметры и характеристики.
Электрический ток в полупроводниках.
Лекция 3 Силовые транзисторы Основные классы силовых транзисторов Транзистор – это полупроводниковый прибор, содержащий два или более p-n переходов и работающий.
Электронно-дырочный переход. В современной электронной технике полупроводниковые приборы играют исключительную роль. За последние три десятилетия они почти.
11 класс вещество, у которого удельное сопротивление может изменяться в широких пределах и очень быстро убывает с повышением температуры, а это значит,
Электронно-дырочный переход Принципы действия большинства полупроводниковых приборов основаны на явлениях и процессах, возникающих на границе p- и n- областей.
Лекция 2 Силовые диоды Электронно-дырочный переход Принципы действия большинства полупроводниковых приборов основаны на явлениях и процессах, возникающих.
Полупроводники и их применение Работу выполнил: Рассадин А.А.
Полупроводники в природе. Физические свойства полупроводников Полупроводники́ материалы, которые по своей удельной проводимости занимают промежуточное.
Выполнили: Миков А.Г., Пронин Е.Х. Руководитель: Гуртов В.А. Полевые Транзисторы 01 Старт !
ЛОГИЧЕСКИЕ ФУНКЦИИ И АЛГЕБРА ЛОГИКИ Раздел 10 Электроника Лекция 17 Автор Останин Б.П. Конец слайда Логические функции и алгебра логики. Слайд 1. Всего.
Транксрипт:

Типы интегральных схем Дополнительный материал по теме:Полупроводники Учитель физики Кюкяйской СОШ Сунтарского улуса Республики Саха Федоров А. М.

p-n переход Полупроводники, из которых изготовляют транзисторы и диоды, разделяются на полупроводники с электронной - n( negative - отрицательный) и дырочной – p (positive – положительный) проводимостью. Принцип действия полупроводниковых диодов основан на свойствах p-n перехода, когда в контакте находятся два полупроводника p и n типа. В месте контакта происходит диффузия положительных зарядов (дырок) из области p в область n, а электронов обратно, из n в p. Однако без внешнего воздействия процесс стабилизируется, потому что образуется так называемый запирающий слой. __ __ __ __ __ __ __ __ np _ _ _

Полупроводниковые диоды При подключении к области p плюса источника электрического тока, а к n минуса, запирающий слой разрушится, такой диод будет проводить ток. Если осуществить подключение источника питания наоборот, т. е. к p – минус, а к n – плюс, то ток будет фактически равен нулю. Это основное свойство полупроводниковых диодов позволяет применять их в качестве выпрямителей тока. Большинство полупроводников делается из кремния и германия с различными добавками, из оксидов некоторых металлов. В зависимости от добавок они имеют n- или p-тип. А К прямое вкл обратное вкл

Транзистор Транзистор представляет собой трехслойную структуру из таких же полупроводниковых материалов, однако в основе его работы лежит не один, а два p-n перехода. Внешние слои называют эмиттером и коллектором, а средний (обычно очень тонкий, порядка нескольких микрон) слой – базой.

Биполярный транзистор Тип n – p – n Тип p – n – p npnpnp Э Б К Основной недостаток биполярного транзистора – большое потребление энергии и выделение тепла.

Полевой транзистор В качестве альтернативы был разработан полевой транзистор. Он представляет собой однополярный полупроводниковый прибор, выводы которого называются исток, сток, затвор. При подаче напряжения на затвор и сток( или соответственно исток) носители заряда, электроны в областях с проводимостью n- типа (или дырки в областях с проводимостью p- типа), проходят через возникающий под затвором тонкий проводящий канал.

МОП - транзисторы Полевые транзисторы с изолированным затвором – МДМ(металл – диэлектрик – полупроводник). МОП- транзисторы более экономичны. Транзистор, изобретенный в 1948 г., лежит в основе всех современных микросхем и микропроцессоров. Его авторы- Уильям Шокли, Уолтер Браттейн, Джон Бардин получили Нобелевскую премию по физике в 1956 г.

Применение транзисторов в вычислительной технике Состояние транзистора, когда через коллектор течет большой ток, можно условно принять за 1, а малый – за 0. Вначале транзисторы изготовлялись как отдельные элементы и представляли собой цилиндры диаметром в десяток миллиметров с несколькими проволочными выводами.

ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ Полупроводниковая микросхема все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния, германия, арсенида галлия).полупроводниковомкремниягерманияарсенида галлия Плёночная микросхема все элементы и межэлементные соединения выполнены в виде плёнок: толстоплёночная интегральная схема; тонкоплёночная интегральная схема. Гибридная микросхема кроме полупроводникового кристалла содержит несколько бескорпусных диодов, транзисторов и(или) других электронных компонентов, помещённых в один корпус.

Классификация микросхем В СССР были предложены следующие названия микросхем в зависимости от степени интеграции (указано количество элементов для цифровых схем):СССР Малая интегральная схема (МИС) до 100 элементов в кристалле. Средняя интегральная схема (СИС) до 1000 элементов в кристалле. Большая интегральная схема (БИС) до элементов в кристалле. Сверхбольшая интегральная схема (СБИС) до 1 миллиона элементов в кристалле. Ультрабольшая интегральная схема (УБИС) до 1 миллиарда элементов в кристалле. Гигабольшая интегральная схема (ГБИС) более 1 миллиарда элементов в кристалле. В настоящее время название ГБИС практически не используется (например, последние версии процессоров Pentium 4 содержат пока несколько сотен миллионов транзисторов), и все схемы с числом элементов, превышающим , относят к классу СБИС, считая УБИС его подклассом.Pentium 4 Интегральная микросхема может обладать законченным, сколь угодно сложным, функционалом вплоть до целого микрокомпьютера (однокристальный микрокомпьютер ). микрокомпьютераоднокристальный микрокомпьютер

Корпуса микросхем Микросхемы выпускаются в двух конструктивных вариантах корпусном и бескорпусном. Бескорпусная микросхема это полупроводниковый кристалл, предназначенный для монтажа в гибридную микросхему или микросборку. Корпус это часть конструкции микросхемы, предназначенная для защиты от внешних воздействий и для соединения с внешними электрическими цепями посредством выводов. Корпуса стандартизованы для упрощения технологического процесса изготовления изделий из разных микросхем. Число стандартных корпусов исчисляется сотнями. В российских корпусах расстояние между выводами измеряется в миллиметрах и наиболее часто это 2,5 мм или 1,25 мм. У импортных микросхем расстояние измеряют в дюймах, используя величину 1/10 или 1/20 дюйма, что соответствует 2,54 и 1,28 мм. В корпусах до 16 выводов эта разница не значительна, а при больших размерах идентичные корпуса уже несовместимы. В современных импортных корпусах для поверхностного монтажа применяют и метрические размеры: 0,8 мм; 0,65 мм и другие.

Вид обрабатываемого сигнала Все микросхемы подразделяют на две группы - аналоговые и цифровые. Аналоговые микросхемы предназначены для работы с непрерывными во времени сигналами. К их числу можно отнести усилители радио-, звуковой и промежуточной частот, операционные усилители, стабилизаторы напряжения и др. Для аналоговых микросхем характерно то, что входная и выходная электрические величины могут иметь любые значения в заданном диапазоне. В цифровых же микросхемах входные и выходные сигналы могут иметь один из двух уровней напряжения: высокий или низкий. В первом случае говорят, что мы имеем дело с высоким логическим уровнем, или логической 1, а во втором - с низким логическим уровнем, или логическим 0. В основу работы цифровых микросхем положена двоичная система счисления. В этой системе используются две цифры: 0 и 1. Цифра 0 соответствует отсутствию напряжения на выходе логического устройства, 1 - наличию напряжения. С помощью нулей и единиц двоичной системы можно записать (закодировать) любое десятичное число. Так, для записи одноразрядного десятичного числа требуются четыре двоичных разряда. Сказанное поясняется табл. 1.

В первом столбце таблицы (ее называют таблицей истинности) записаны десятичные числа от 0 до 9, а в последующих четырех столбцах - разряды двоичного числа. Видно, что число в последующей строке получается в результате прибавления 1 к первому разряду двоичного числа. С помощью четырех разрядов можно записать числа от 0000 до 1111, что соответствует диапазону чисел от 0 до 15 в десятичной системе. Таким образом, если двоичное число содержит N разрядов, то с его помощью можно записать максимальное десятичное число, равное 2^(N-1). По таблице также несложно заметить, как можно перевести число из двоичной системы в десятичную. Для этого достаточно сложить степени числа 2, соответствующие тем разрядам, в которых записаны логические 1. Так, двоичное число 1001 соответствует десятичному числу 9 (2^3 + 2^0). Двоичную систему счисления используют в большинстве современных цифровых вычислительных машин.

СПАСИБО ЗА ВНИМАНИЕ!