Неопределенный интеграл Лекция7Элементы интегрального исчисления 1.Первообразная и неопределенный интеграл 2.Основные приемы вычисления неопределенных.

Презентация:



Advertisements
Похожие презентации
Неопределенный интеграл Лекция7. Элементы интегрального исчисления 1.Первообразная и неопределенный интеграл 2.Основные приемы вычисления неопределенных.
Advertisements

НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, ЕГО СВОЙСТВА И ВЫЧИСЛЕНИЕ.
Интегральное исчисление. Дифференциальные уравнения.
Определение Свойства неопределенного интеграла Таблица основных интегралов Методы интегрирования Табличное интегрирование. Метод разложения. Метод замены.
§7 НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. МЕТОДЫ ИНТЕГРИРОВАНИЯ НЕОПРЕДЕЛЕННОГО ИНТЕГРАЛА 7.1 Первообразная и неопределенный интеграл Основная задача интегрального исчисления.
1 Производная от неопределенного интеграла равна подынтегральной функции.
Неопределённый интеграл.. Первообразная. Задача дифференциального исчисления: по данной функции найти её производную. Задача интегрального исчисления:
Неопределенный интеграл. Основные свойства неопределенного интеграла.
Лекция Неопределенный интеграл. Основные понятия Исследования во многих отраслях знаний приводят к необходимости по заданной производной найти исходную.
Учебное пособие по дисциплине «Элементы высшей математики» Учебное пособие по дисциплине «Элементы высшей математики» Преподаватель: Французова Г.Н. Преподаватель:
НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ 1.Определение и свойства неопределенного интеграла.
Интегральное исчисление функций одной переменной..
Интегральное исчисление Неопределенный интеграл. Определение 1. Функция называется первообразной для в, если определена в и Пример.
Определение: Функция F(х) называется первообразной функции f(х) на промежутке Х, если Теорема: Если функция f(х) непрерывна при,то для f(х) существует.
Способы вычисления неопределённого интеграла Цель: отработать навыки вычисления неопределённого интеграла различными способами.
Неопределённый интеграл.. Метод подстановки (замены переменной) Найти пусть, тогда Функцию следует выбирать так, чтобы можно было вычислить неопределенный.
Неопределенный интеграл.. §1 Первообразная функция. Понятие неопределенного интеграла. Определение: Первообразной функцией для данной функции f(x) на.
Интегральное исчисление функции одной переменной 5 тема.
План: 1.Понятие первообразной функции. Неопределенный интеграл. 2.Методы интегрирования (по формулам, заменой переменной, по частям). 3.Понятие определенного.
План лекции 1)Интегрирование иррациональных функций 2)Метод интегрирования по частям 3)Интегрирование тригонометрических функций.
Транксрипт:

Неопределенный интеграл Лекция7

Элементы интегрального исчисления 1.Первообразная и неопределенный интеграл 2.Основные приемы вычисления неопределенных интегралов 3.Интегрирование функций, содержащих квадратный трехчлен 4.Интегрирование дробно-рациональных функций 5.Интегрирование тригонометрических функций 6.Интегрирование некоторых иррациональностей

Неопределенный интеграл, его свойства и вычисление

Первообразная и неопределенный интеграл

Свойства интеграла, вытекающие из определения Производная неопределенного интеграла равна подынтегральной функции, а его дифференциал- подынтегральному выражению. Действительно:

Свойства интеграла, вытекающие из определения Неопределенный интеграл от дифференциала непрерывно дифференцируемой функции равен самой этой функции с точностью до постоянной: 3. так как является первообразной для

Свойства интеграла

Таблица неопределенных интегралов

Свойства дифференциалов При интегрировании удобно пользоваться свойствами:

Примеры

Независимость от вида переменной

Пример Вычислим

Методы интегрирования

Интегрирование по частям

Примеры

Метод замены переменной

Интегрирование функций, содержащих квадратный трехчлен

Пример

Найти