Мнимая единица комплексное число, квадрат которого равен отрицательной единице. В математике, физике мнимая единица обозначается как латинская i. Она.

Презентация:



Advertisements
Похожие презентации
После изучения темы «Комплексные числа учащиеся должны: Знать: алгебраическую, геометрическую и тригонометрическую формы комплексного числа. Уметь: производить.
Advertisements

Комплексные числа МАОУ «Гимназия 1» Пермь, 2014 Медведева Людмила Петровна, учитель математики.
Комплексные числа. Основные понятия Комплексным числом z называют выражение: где а и b – действительные числа, i – мнимая единица, определяемая равенством:
Комплексные числа. Кафедра Алгебры, Геометрии и Анализа. ДВФУ.
Алгоритмы арифметических действий над комплексными числами Выполнила: Ученица 10 класса ХБ МОУ лицей Г. Нижневартовска Чикмарёва Лиана.
Комплексные числа. Комплексным числом называется число вида где x и y – вещественные числа.
Комплексные числа и арифметические операции над ними.
Тема: КОМПЛЕКСНЫЕ ЧИСЛА МБОУ лицей 1 г. Комсомольск-на-Амуре Чупрова О.С.
Комплексные числа
ЧИСЛОВЫЕ СИСТЕМЫ Действительные числа Рациональные числа Целые числа Комплексные числа Натуральные числа.
Тригонометрическая форма записи комплексного числа. -новая форма представления комплексного числа; -свойства модуля комплексного числа; Учитель математики.
LOGO МБОУ СОШ 5 – «Школа здоровья и развития» г. Радужный Автор: Семёнова Елена Юрьевна.
+ = 3 2 = Как называются числа при сложении? 5 5.
{ поле комплексных чисел - алгебраическая запись - плоскость комплексного переменного - тригонометрическая форма записи комплексного числа - формула Муавра.
Автор : Преподаватель ГБПОУ КК СТТТ ИВАНКОВА НАДЕЖДА ПЕТРОВНА Автор : преподаватель математики ГБПОУ КК СТТТ Иванкова Надежда Петровна.
КОМПЛЕКСНЫЕ ЧИСЛА. N C Z C Q C R C C N- natural R- real C - complex Z – исключительная роль нуля zero Q – quotient отношение ( т.к. рациональные числа.
МОУ «ДСОШ 5» учитель начальных классов Бобыльских Н. М.
Определение комплексного числа. Термин мнимые числа ввел в 1637 году французский математик и философ Р. Декарт, а в 1777 году один из крупнейших математиков.
Практическая работа «Действия с комплексными числами»
LOGO Действительные числа. LOGO Cодержание Множество действительных чисел Примеры и назначение Рациональные числа Иррациональные числа Свойства.
Транксрипт:

Мнимая единица комплексное число, квадрат которого равен отрицательной единице. В математике, физике мнимая единица обозначается как латинская i. Она позволяет расширить поле вещественных(действительных) чисел до поля комплексных чисел.

Мнимая единица некоторое число, квадрат которого равен 1.

Комплексные числа - это пара (a,b) действительных чисел с заданными определенным образом операциями умножения и сложения. Комплексное число z=(a,b) записывают как z = a + b * i ;

Модулем комплексного числа называется длина вектора OP, изображающего комплексное число на координатной (комплексной) плоскости. Модуль комплексного числа a+ biобозначается | a+ bi | или буквой r и равен:

Комплексные числа записываются в виде: a+ bi. Здесь a и b – действительные числа, а i -мнимая единица. Число a называется абсциссой, b – ординатой комплексного числа a+ bi. Два комплексных числа a+ bi и a -bi называются сопряжёнными комплексными числами.

1. Действительное число а может быть также записано в форме комплексного числа: a+ 0 i или a – 0 i. Например, записи i и 5 – 0 i означают одно и то же число Комплексное число 0+ bi называется чисто мнимым числом. Запись bi означает то же самое, что и 0+ bi. 3. Два комплексных числа a+ bi и c+ di считаются равными, если a= c и b= d. В противном случае комплексные числа не равны.

Сложение. Суммой комплексных чисел a+ bi и c+ di называется комплексное число ( a+ c ) + ( b+ d ) i. Таким образом, при сложении комплексных чисел отдельно складываются их абсциссы и ординаты. Вычитание. Разностью двух комплексных чисел a+ bi (уменьшаемое) и c+ di (вычитаемое) называется комплексное число ( a – c ) + ( b – d ) i. Таким образом, при вычитании двух комплексных чисел отдельно вычитаются их абсциссы и ординаты. Умножение. Произведением комплексных чисел a+ bi и c+ di называется комплексное число: ( ac – bd ) + ( ad + bc ) i. Это определение вытекает из двух требований: 1) числа a+ bi и c+ di должны перемножаться, как алгебраические двучлены, 2) число i обладает основным свойством: i 2 = –1. Деление. Разделить комплексное число a+ bi (делимое) на другое c+ di (делитель) - значит найти третье число e+ f i (частное), которое будучи умноженным на делитель c+ di, даёт в результате делимое a+ bi. Если делитель не равен нулю, деление всегда возможно. (a+bi)/(c+di)=(((ac+bd)/(c^2+d^2))+((bc-ad)/(c^2+d^2)))*i

Долгое время эти числа не находили физического применения, поэтому их и назвали «мнимыми» числами. Однако сейчас они очень широко применяются в различных областях физики и техники: электротехнике, гидро- и аэродинамике, теории упругости и др.