Подготовка к ЕГЭ по математике Решение текстовых задач «на работу»

Презентация:



Advertisements
Похожие презентации
РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ СИСТЕМ УРАВНЕНИЙ С ДВУМЯ НЕИЗВЕСТНЫМИ 9 КЛАСС Решение текстовых задач Демакова Ирина Павловна - учитель математики МБОУ «Лицей.
Advertisements

1 Задачи на составление уравнений Школа ЕГЭ. 2 При создании презентации были использованы задачи из книги С. А. Шестакова, Д. Л. Гущина « Математика.
Учитель: Дряпак Людмила Николаевна Сумма двух чисел равна 12, а их произведение равно 35. Найдите эти числа. Пусть 1 число – х, а 2 число – у, известно,
Задачи на работу обычно содержат следующие величины: Задачи на работу обычно содержат следующие величины:
Тема: «Решение текстовых задач» Используются задания В12 ЕГЭ по математике.
Национальный институт образованияТ.А. Адамович, Г.В. Кирись Задачи на совместную работу Текстовые задачи.
Текстовые задачи. Предлагаемые задачи можно условно разбить на следующие типы задач: 1. Задачи «на совместную работу»; 2. Задачи на «планирование»; 3.
К ЕГЭ шаг за шагом Задачи группы В12 Prezentacii.com.
Задачи на работу обычно содержат следующие величины: Задачи на работу обычно содержат следующие величины: – время, в течение которого производится работа,
«Текстовые задачи по математике», 9 класс. Дистанционный курс.
Национальный институт образованияТ.А. Адамович, Г.В. Кирись 1 Задачи на проценты и пропорции Текстовые задачи.
ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА Решение типовых задач ЕГЭ по математике (В 13) Каменева М.А. РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ ЕГЭ ПО МАТЕМАТИКЕ (В 13)
Решение задач на работу. Процесс «Работа» (5 кл) Характеристики : A – объем работы ; Т – время; N – производительность труда. Задача : Два столяра, работая.
1. Анализ текста задачи. 2. Составление таблицы - условия. 3. Выбор метода решения. 4. Решение. 5. Интерпретация полученного результата.
Работа учителя математики Зениной Алевтины Дмитриевны Задачи на работу.
Решение прототипов задания В13 Новиков Денис ( выпуск 2013) 73 Прототип 73 Каждый из двух рабочих одинаковой квалификации может выполнить заказ за 15 часов.
«Материалы на стенд» Этапы работы над задачей 1. Анализ текста задачи. 2. Составление таблицы, схемы – краткая запись условия. Поиск решения 3. Выбор.
Прямая пропорциональная зависимость. Заполните таблицу, используя формулу пути s = vt Скорость v = 10 км/ч t, ч2412 s, км 2 раза 6 раз
Математика на 5 «+» Подготовка к ГИА (задачи 2 части) Задачи на процентное содержание и концентрацию Подготовила учитель математики Кашкаха Н.В. МБОУ СОШ.
26 октября Урок математики Тема: Закрепление. Вычисли 6 х 2 =35 : 5 = 3 х 4 =32 : 4 = 6 х 3 =28 : 7 = 3 х 7 =16 : 4 =
Транксрипт:

Подготовка к ЕГЭ по математике Решение текстовых задач «на работу»

Результаты решения текстовых задач на ЕГЭ по математике.

Особенности решения задач «на работу». А=Р*t, где А-работа Р- производительность труда t- время Р=А/t t=А/Р Если в условии не дана вся работа, то её можно принять за 1 Общая производительность равна сумме производительностей.

Пример 1 Для наполнения плавательного бассейна водой имеются три насоса. Первому насосу для наполнения бассейна требуется времени в три раза меньше, чем второму, и на 2 ч больше, чем третьему. Три насоса, работая вместе, наполнили бы бассейн за 3ч, но по условиям эксплуатации одновременно должны работать только два насоса. Определите минимальную стоимость наполнения бассейна, если 1ч работы любого из насосов стоит 140 рублей. Решение: Эту задачу удобно решать с помощью таблицы.

РаботаВремя, часПроизводительность 1 насос 2 насос 3 насос ВМЕСТЕ X+2 3 X 3(х + 2) 1/X+2 1/3(X+2) 1/3 1/X

Алгоритм решения задачи 1. Внесем в таблицу известные величины ( работу примем за 1) 2. Одну из неизвестных величин обозначим за х. 3. Остальные неизвестные величины выразим через х, используя условие задачи или формулы.. 4Составим уравнение. 5. Решим уравнение и ответим на главный вопрос задачи.

Уравнение 1/х+2 + 1/3(х+2) + 1/х = 1/3 Решив уравнение, мы найдем х=6 6ч- время наполнения бассейна третьим насосом. Тогда время первого насоса 8ч, второго 24ч. Значит минимальное время работы двух насосов – это время работы 1 и3 насосов,т.е. 14ч Определим минимальную стоимость наполнения бассейна двумя насосами. 140*14=1960(руб.) Ответ: 1960 руб.

Реши сам! Два маляра, работая вместе, могут за 1ч покрасить стену площадью 40 кв.м. Первый маляр, работая отдельно, может покрасить 50 кв. м стены на 4ч быстрее, чем второй покрасит 90 кв.м такой же стены. За сколько часов первый маляр сможет покрасит 100 кв. м стены? Ответ: 4ч

Пример 2

Пример 3 Бак заполняют керосином за 2часа 30 минут с помощью трех насосов, работающих вместе. Производительности насосов относятся как 3:5:8. Сколько процентов объёма будет заполнено за 1час 18 минут совместной работы второго и третьего насосов?

Решение задачи Так как объём бака не указан, то примем объём бака за 1. Пусть коэффициент пропорциональности равен х, тогда производительности насосов соответственно равны 3х, 5х, 8х. И время наполнения бака при совместной работе всех трех насосов равно 1/3х+5х+8х = 1/ 16х или, по условию задачи, 2ч 30 мин. Решим уравнение 1/16х = 2,5 Х =1/ 40 Производительность второго насоса равна 1/ 40 * 5 = 1/ 8 Производительность третьего насоса равна 1/ 40 * 8 = 1/ 5. Совместная производительность второго и третьего насосов равна 1/ 8 + 1/ 5 =13/40 За 1ч 30мин второй и третий насосы наполнят 13/ 40 * 78/ 60 = 13/ 40 * 1,3 = 16,9/ 40 = 0,4225 объёма бака. Итак, при совместной работе 2 и 3 насосов за 1ч 18 мин будет заполнено 0,4225 *100% =42,25% объёма бака.

Реши сам ! Два фермера, работая вместе могут вспахать поле за 25 ч. Производительности труда первого и второго фермеров относятся как 2:5. Фермеры планируют работать поочередно. Сколько времени должен проработать второй фермер, чтобы это поле было вспахано за 45,5 ч? Ответ: 28 ч.