Угол между плоскостями. В прямоугольном параллелепипеде ABCD A 1 B 1 C 1 D 1, где AB=5,AD=12, CC 1 =15. Найдите угол между плоскостями ABC и A 1 DB. Решение.

Презентация:



Advertisements
Похожие презентации
12 5 В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 известны ребра AB = 5, АD = 12, CC 1 = 15. Найдите угол между плоскостями ABC и A 1 DB. D AN является.
Advertisements

Подготовили: Корпатенков А. 11«А» Тюрин Е. 11«А» Проверила: Андреещева В.И.
С А В В 1 В 1 А 1 А 1 С 1 С 1 Основание прямой призмы ABCA 1 B 1 C 1 – треугольник АВС, площадь которого равна 12, АВ = 5. Боковое ребро призмы равно 36.
П-я 4 В А С1С1 В1В1 Основанием прямой призмы ABCA 1 B 1 C 1 является равнобедренный треугольник АВС, в котором СВ=СА=5, ВА=6. Высота призмы равна 24. Точка.
Перпендикулярность прямой и плоскости D1D1 C1C1 B1B1 A1A1 D C BA ABCD – прямоугольный параллелепипед. Как называются прямые AB и BC Найдите угол между.
В прямоугольном параллелепипеде Прототип задания B9 ( ) - B9 ( ) С 1 по 5 в открытом банке заданий о математике 2011 год В9В9.
В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 точка M – середина ребра B 1 C 1, AB = 3, BC = 4, BB 1 = 2. Найдите угол между плоскостями BMD и ABC.
Теорема 1 Каждая сторона треугольника меньше суммы двух других сторон. Доказательство. Рассмотрим треугольник АВС. Отложим на продолжении стороны АВ отрезок.
С2 по геометрии Выполнил ученик 11 класса «а» Школы 4 Никитин Андрей.
ЗАДАЧИ ЕГЭ (С2). Расстояние от точки до прямой, не содержащей эту точку, есть длина отрезка перпендикуляра, проведенного из этой точки на прямую. Расстояние.
Перпендикуляр Перпендикуляром, опущенным из точки A на прямую а, называется отрезок AB, соединяющий точку A с точкой B прямой a, перпендикулярный прямой.
С B 1 L является наклонной к плоскости ABC. D A D1D1D1D1 C1C1C1C1 В B1B1B1B1 2 н-я п-р A1A1A1A1 3 2 NF 1) Построим линейный угол двугранного угла B 1 NAB.
Перпендикулярность прямой и плоскости
ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом.
Двугранный угол. Признак перпендикулярности двух плоскостей Геометрия 10.
Теорема 1 Каждая сторона треугольника меньше суммы двух других сторон. Доказательство. Рассмотрим треугольник АВС. Отложим на продолжении стороны АВ отрезок.
Медиана, биссектриса, высота треугольника. Теорема: Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой и причем только один.
Прямая с пересекает плоскость α. Через две пересекающиеся прямые а и с проходит плоскость β и притом только одна.
ПРЕЗЕНТАЦИЯ ПО ГЕОМЕТРИИ ТЕМА: ПАРАЛЛЕЛЬНОСТЬ ПРЯМЫХ И ПЛОСКОСТЕЙ. (10 класс) Учитель математики Андреева Тамара Антоновна ГОУ ЦО 556.
Теорема о трех перпендикулярах Нас мало. Нас может быть трое… Б. Пастернак. Из цикла «Я их мог позабыть»
Транксрипт:

Угол между плоскостями

В прямоугольном параллелепипеде ABCD A 1 B 1 C 1 D 1, где AB=5,AD=12, CC 1 =15. Найдите угол между плоскостями ABC и A 1 DB. Решение. 1)BD – линия пересечения плоскостей ABC и A 1 DB. 2) В плоскости ABC проведем AK BD,где К BD. 3)Соединим отрезком точки А 1 и К. А 1 К BD по теореме о трех перпендикулярах. K

4) АКА 1 – линейный двугранного угла между плоскостями АВС и А1DВ. АКА 1 найдем из треугольника А 1 DВ. 5)BD=AB 2 +АD 2 = =25+144=13. S ABD =½ AB*AD S ABD =½ BD*AK D C BA K K 12 5 =>AB*AD=BD*AK

6) Из треугольника АА 1 K( А 1 АК=90). AKА 1 =arctg Ответ: arctg... K

Задачи для самостоятельного решения