Учебно-исследовательская деятельность школьников как технология развивающего образования Учитель информатики МБОУ СОШ 25 Горбунова Татьяна Степановна.

Презентация:



Advertisements
Похожие презентации
Признаки равенства прямоугольных треугольников. Вопрос 1 Какой треугольник называется прямоугольным? Ответ: Если один из углов треугольника прямой, то.
Advertisements

КЛАСС Прямоугольный треугольник. Содержание Из истории математики Из истории математики Из истории математики Из истории математики Определение Определение.
Все о прямоугольном треугольнике Обобщение Геометрия 7 класс.
Шуть И.Е. 1. Фронтальный опрос: а)Определение треугольника. б)Виды треугольников в)Признаки равенства треугольников. г)Свойства равнобедренного треугольника.
Выполнил: Ковалов Р. Проверила: Мильбрат. А.А. Проверила: Мильбрат. А.А.
ПРЯМОУГОЛЬНЫЕ ТРЕУГОЛЬНИКИ Работу выполнила Жеребятьева Елена 7 класс.
Фардиева Н.Ш. Сумма углов треугольника А В С. Сумма углов треугольника равна
ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК Презентация разработана учителем математики МОУ «Корниловская средняя школа» Купцовой Е.В.
Сумма углов треугольника А В С. Сумма углов треугольника равна
Прямоугольный треугольник Учитель: Саншокова С. С.
А В С АВС- треугольник А, В, С - вершины АВ, ВС, АС - стороны АВС,ВСА,САВ - углы АВ + ВС + СА= Р периметр.
Второй признак равенства треугольников. Выполнила ученица 7 «В» класса МОУ «СОШ 3» ученица 7 «В» класса МОУ «СОШ 3» Петухова Настя.
Прямоугольный треугольник КЛАСС. С о д е р ж а н и е Из истории математики Определения Некоторые свойства прямоугольных треугольников Признаки равенства.
Презентация учителя математики МОУ «Напольнокотякская СОШ» Канашского Чувашской республики.
Все о треугольниках ГЕОМЕТРИЯ 7 КЛАСС Составила: учитель математики ОГКУЗ «Детский санаторий г. Грайворон» г. Грайворон, Белгородская область.
Задачи для школьников : 1. Знать признаки равенства прямоугольных треугольников. 2. Уметь применять признаки равенства прямоугольных треугольников при.
Прямоугольный треугольник. Геометрия 7 класс
Геометрия 7 класс Основные темы Автор: учитель математики Пачина Н.П. МОУ «СОШ 59»
Зозуля Е.А. МАОУ лицей 3. Если один из углов треугольника прямой, то треугольник называется прямоугольным. А В С Сторона прямоугольного треугольника,
Презентация по теме: «Треугольники» Подготовили Ученицы 9 класса Б Камаретдинова Карина Семёнова Алина.
Транксрипт:

Учебно-исследовательская деятельность школьников как технология развивающего образования Учитель информатики МБОУ СОШ 25 Горбунова Татьяна Степановна

ГЕОМЕТРИЯ 7-В класс Выполнил: ИГОРЬ БОЛДЫРЕВ Руководил: Татьяна Степановна Горбунова

С о д е р ж а н и е : Определения Некоторые свойства прямоугольных треугольников Признаки равенства прямоугольных треугольников Это интересно

Определения Если один из углов треугольника прямой, то треугольник называется прямоугольным. А В С Сторона прямоугольного треугольника, лежащая против прямого угла, называется гипотенузой, а две другие – катетами. Треугольник – это геометрическая фигура, состоящая из трёх точек, не лежащих на одной прямой, и трёх отрезков, соединяющих эти точки.

Некоторые свойства прямоугольных треугольников 1. Сумма двух острых углов прямоугольного треугольника равна Катет прямоугольного треугольника, лежащий против угла в 30 0, равен половине гипотенузы. 3. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30 0.

Признаки равенства прямоугольных треугольников 1.Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны. 2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны. 3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны. 4. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны. Докажем?

Признаки равенства прямоугольных треугольников 1.Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны. 2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны. 3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны. 4. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны. Докажем?

Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны. Дано: Доказать: Доказательство: В А А1А1 С С1С1 В1В1 АВС – прямоугольный, А 1 В 1 С 1 – прямоугольный, ВС = В 1 С 1, АС = А 1 С 1. АВС = А 1 В 1 С 1 следует из первого признака равенства треугольников (по двум сторонам и углу между ними).

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны. В А А1А1 С С1С1 В1В1 Дано: Доказать: Доказательство: следует из второго признака равенства треугольников (по стороне и прилежащим к ней углам) АВС – прямоугольный, А 1 В 1 С 1 – прямоугольный, АС = А 1 С 1, АВС = А 1 В 1 С 1

Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны. В А А1А1 С С1С1 В1В1 Дано: Доказать: Доказательство: т.к. сумма острых углов прямоугольного треугольника равна 90°, то два других острых угла также равны, АВС = А 1 В 1 С 1 АВС – прямоугольный, А 1 В 1 С 1 – прямоугольный, АВ = А 1 В 1, по второму признаку равенства треугольников (по стороне и прилежащим к ней углам). поэтому треугольники равны

Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны. В А А1А1 С С1С1 В1В1 Дано: Доказать: Доказательство: АВС = А 1 В 1 С 1 АВС – прямоугольный, А 1 В 1 С 1 – прямоугольный, АВ = А 1 В 1, АС = А 1 С 1. Наложим А 1 В 1 С 1 на треугольник АВС. Т.к. АС = А 1 С 1 и АВ = А 1 В 1, то они при наложении совпадут. Тогда вершина А 1 совместиться с вершиной А. Но и тогда и вершины В 1 и В также совместятся. Следовательно, треугольники равны.

Задачи по готовым чертежам А СВ D ? В А С 37 0 ? ? А В С 70 0 ? А В С см ? см D С А В ? 4,2 см 8,4 см

1. Прямоугольным называется треугольник, у которого а) все углы прямые;все углы прямые б) два угла прямые;два угла прямые в) один прямой угол.один прямой угол

2. В прямоугольном треугольнике всегда а) два угла острых и один прямой;два угла острых и один прямой б) один острый угол, один прямой и один тупой угол;один острый угол, один прямой и один тупой угол в) все углы прямые.все углы прямые

3. Стороны прямоугольного треугольника, образующие прямой угол, называются а) сторонами треугольника;сторонами треугольника б) катетами треугольника;катетами треугольника в) гипотенузами треугольника.гипотенузами треугольника

4. Сторона прямоугольного треугольника, противолежащая прямому углу, называется а) стороной треугольника;стороной треугольника б) катетом треугольника;катетом треугольника в) гипотенузой треугольника.гипотенузой треугольника

5. Сумма острых углов прямоугольного треугольника равна а) 180°;180° б) 100°;100° в) 90°.90°

Это интересно Треугольник – это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины. В любом треугольнике: 1. Против большей стороны лежит больший угол, и наоборот. 2. Против равных сторон лежат равные углы, и наоборот. 3. Сумма углов треугольника равна 180 º 4. Продолжая одну из сторон треугольника, получаем внешний угол. Внешний угол треугольника равен сумме внутренних углов, не смежных с ним.

вернуться к содержанию УДАЧИ!!!