ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом.

Презентация:



Advertisements
Похожие презентации
ДВУГРАННЫЙ УГОЛ Двугранным углом называется фигура (рис. 1), образованную двумя полуплоскостями, с общей ограничивающей их прямой, и частью пространства,
Advertisements

ДВУГРАННЫЙ УГОЛ Двугранным углом называется фигура (рис. 1), образованная двумя полуплоскостями, с общей ограничивающей их прямой, и частью пространства,
Угол между прямыми в пространстве Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ В ПРОСТРАНСТВЕ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающи- мися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Угол в пространстве Углом в пространстве называется фигура, образованная двумя лучами с общей вершиной и одной из частей плоскости, ограниченной этими.
Угол между прямыми в пространстве Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом.
ДВУГРАННЫЙ УГОЛ Двугранным углом называется фигура (рис. 1), образованную двумя полуплоскостями, с общей ограничивающей их прямой, и частью пространства,
ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом.
Многогранники: типы задач и методы их решения. Домашняя задача В основании прямой призмы АВСА 1 В 1 С 1 лежит прямоугольный равнобедренный треугольник.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя скрещивающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Методическая разработка по геометрии (10 класс) по теме: урок по теме "Угол между прямыми в пространстве"
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Транксрипт:

ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом двугранного угла называется угол, образованный лучами с вершиной на граничной прямой, стороны которого лежат на гранях двугранного угла и перпендикулярны граничной прямой. Величиной двугранного угла называется величина его линейного угла. Углом между двумя пересекающимися плоскостями называется наименьший из двугранных углов, образованных этими плоскостями.

В тетраэдре ABCD, ребра которого равны 1, найдите угол между плоскостями ABC и BCD. Ответ: Решение: Пусть E – середина BC. Искомым линейным углом является угол AED. В треугольнике AED имеем: AD = 1, AE = DE = По теореме косинусов находим

В правильной пирамиде SABCD, все ребра которой равны 1, найдите угол между плоскостями SBC и ABC. Ответ: Решение: Пусть E, F – середины ребер BC и AD, O – центр основания. Искомым линейным углом является угол SEF. В прямоугольном треугольнике SEO имеем EO =, SE = Следовательно,

В правильной пирамиде SABCD, все ребра которой равны 1, найдите двугранный угол, образованный гранями SAB и SBC. Ответ: Решение: Пусть E – середина ребра SB. Искомым линейным углом является угол AEC. В треугольнике AEC имеем: AC =, AE = CE = По теореме косинусов находим

В правильной пирамиде SABCD, все ребра которой равны 1, найдите угол между плоскостями SAD и SBC. Ответ: Решение: Пусть E, F – середины ребер AD, BC. Искомым линейным углом является угол ESF. В треугольнике ESF имеем: EF = 1, SE = SF = По теореме косинусов находим

В правильной 6-ой пирамиде SABCDEF, боковые ребра которой равны 2, а ребра основания – 1, найдите угол между плоскостями ABC и SBC. Ответ: Решение: Пусть O – центр основания, G – середин ребра BC. Искомым линейным углом является угол SGO. В прямоугольном треугольнике SGO имеем: OG =, SG = Следовательно,

В правильной 6-ой пирамиде SABCDEF, боковые ребра которой равны 2, а ребра основания – 1, найдите двугранный угол, образованный гранями SAB и SBC. Ответ: Решение: В треугольниках SAB и SBC опустим высоты AH и CH на сторону SB. Искомым линейным углом является угол AHC. В прямоугольном треугольнике AHC имеем: AC =, AH = CH = По теореме косинусов находим

В правильной 6-ой пирамиде SABCDEF, боковые ребра которой равны 2, а ребра основания – 1, найдите двугранный угол, образованный гранями SAB и SBC. Ответ: Решение: Продолжим ребра AB и DC до пересечения в точке G. В треугольниках SAG и SDG опустим высоты AH и DH на сторону SG. Искомым линейным углом является угол AHD. В треугольнике AHD имеем: AD = 2, AH = DH = По теореме косинусов находим

В правильной 6-ой пирамиде SABCDEF, боковые ребра которой равны 2, а ребра основания – 1, найдите двугранный угол, образованный гранями SAB и SDE. Ответ: Решение: Пусть G, H – середины ребер AB, DE. Искомым линейным углом является угол GSH. В треугольнике GSH имеем: GH =, SG = SH = По теореме косинусов находим