ВВЕДЕНИЕ В МАТЕМАТИЧЕСКУЮ ЛОГИКУ
ВОПРОСЫ. 1. Что такое логика? Формальная логика. Математическая логика. 2. Этапы развития логики. 3. Диаграммы Эйлера-Венна. 4. Применение математической логики. 5. Алгебра высказываний. Простые и сложные высказывания. 6. Основные операции алгебры высказываний.
ВОПРОС 1 Что такое логика? Формальнаялогика.Математическаялогика.
LOGOS (ГРЕЧ.)- СЛОВО, ПОНЯТИЕ, РАССУЖДЕНИЕ, РАЗУМ. СЛОВО «ЛОГИКА» ОБОЗНАЧАЕТ СОВОКУПНОСТЬ ПРАВИЛ, КОТОРЫМ ПОДЧИНЯЕТСЯ ПРОЦЕСС МЫШЛЕНИЯ. ОСНОВНЫМИ ФОРМАМИ АБСТРАКТНОГО МЫШЛЕНИЯ ЯВЛЯЮТСЯ: ПОНЯТИЯ, СУЖДЕНИЯ, УМОЗАКЛЮЧЕНИЯ.
ПОНЯТИЕ - ФОРМА МЫШЛЕНИЯ, В КОТОРОЙ ОТРАЖАЮТСЯ СУЩЕСТВЕННЫЕ ПРИЗНАКИ ОТДЕЛЬНОГО ПРЕДМЕТА ИЛИ КЛАССА ОДНОРОДНЫХ ПРЕДМЕТОВ. ОДНОРОДНЫХ ПРЕДМЕТОВ. (ТРАПЕЦИЯ, ДОМ) СУЖДЕНИЕ - МЫСЛЬ, В КОТОРОЙ ЧТО-ЛИБО УТВЕРЖДАЕТСЯ ИЛИ ОТРИЦАЕТСЯ О ПРЕДМЕТАХ. СУЖДЕНИЕ - МЫСЛЬ, В КОТОРОЙ ЧТО-ЛИБО УТВЕРЖДАЕТСЯ ИЛИ ОТРИЦАЕТСЯ О ПРЕДМЕТАХ. (ВЕСНА НАСТУПИЛА, И ГРАЧИ ПРИЛЕТЕЛИ) УМОЗАКЛЮЧЕНИЕ - ПРИЕМ МЫШЛЕНИЯ, ПОСРЕДСТВОМ КОТОРОГО ИЗ ИСХОДНОГО ЗНАНИЯ ПОЛУЧАЕТСЯ НОВОЕ ЗНАНИЕ. (ВСЕ МЕТАЛЛЫ - ПРОСТЫЕ ВЕЩЕСТВА)
МАТЕМАТИЧЕСКАЯ ЛОГИКА - ИЗУЧАЕТ ЛОГИЧЕСКИЕ СВЯЗИ И ОТНОШЕНИЯ, ЛЕЖАЩИЕ В ОСНОВЕ ЛОГИЧЕСКОГО (ДЕДУКТИВНОГО) ВЫВОДА. ЛОГИКА (ФОРМАЛЬНАЯ) - НАУКА О ЗАКОНАХ И ФОРМАХ ПРАВИЛЬНОГО МЫШЛЕНИЯ.
ВОПРОС 2 ЭТАПЫ РАЗВИТИЯ ЛОГИКИ.
АРИСТОТЕЛЬ ( ГГ. ДО Н.Э.) - ОСНОВОПОЛОЖНИК ЛОГИКИ. КНИГИ: «КАТЕГОРИИ» «ПЕРВАЯ АНАЛИТИКА» «ВТОРАЯ АНАЛИТИКА» (ИССЛЕДОВАЛ РАЗЛИЧНЫЕ ФОРМЫ РАССУЖДЕНИЙ, ВВЕЛ ПОНЯТИЕ СИЛЛОГИЗМА)
СИЛЛОГИЗМ - РАССУЖДЕНИЕ, В КОТОРОМ ИЗ ЗАДАННЫХ ДВУХ СУЖДЕНИЙ ВЫВОДИТСЯ ТРЕТЬЕ. 1. ВСЕ МЛЕКОПИТАЮЩИЕ ИМЕЮТ СКЕЛЕТ. ВСЕ КИТЫ - МЛЕКОПИТАЮЩИЕ. СЛЕДОВАТЕЛЬНО, ВСЕ КИТЫ ИМЕЮТ СКЕЛЕТ. 2. ВСЕ КВАДРАТЫ - РОМБЫ. ВСЕ РОМБЫ - ПАРАЛЛЕЛЕГРАММЫ. СЛЕДОВАТЕЛЬНО, ВСЕ КВАДРАТЫ - ПАРАЛЛЕЛОГРАММЫ.
АРИСТОТЕЛЬ ВЫДЕЛИЛ ВСЕ ПРАВИЛЬНЫЕ ФОРМЫ СИЛЛОГИЗМОВ, КОТОРЫЕ МОЖНО СОСТАВИТЬ ИЗ РАССУЖДЕНИЙ ВИДА: «Все А суть В» «Некоторые А суть В» «Некоторые А суть В» «Все А не суть В» «Все А не суть В» «Некоторые А не суть В» «Некоторые А не суть В» Логика, основанная на теории силлогизмов называется классической.
Декарт Рене ( , фр. Философ, математик) РЕКОМЕНДОВАЛ В ЛОГИКЕ ИСПОЛЬЗОВАТЬ МАТЕМАТИЧЕСКИЕ МЕТОДЫ.
Лейбниц Г.В. ( , нем. ученый и математик) - ПРЕДЛОЖИЛ ИСПОЛЬЗОВАТЬ В ЛОГИКЕ МАТЕМАТИЧЕСКУЮ СИМВОЛИКУ И ВПЕРВЫЕ ВЫСКАЗАЛ МЫСЛЬ О ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ В НЕЙ ДВОИЧНОЙ СИСТЕМЫ СЧИСЛЕНИЯ.
Джордж Буль ( , анл.) - основоположник мат. логики. СОЗДАЛ БУЛЕВУ АЛГЕБРУ - ОДИН ИЗ РАЗДЕЛОВ МАТЕМАТИЧЕСКОЙ ЛОГИКИ. РАЗРАБОТАЛ СВОЙ АЛФАВИТ, ОРФОГРАИЮ И ГРАММАТИКУ.
ВКЛАД В СТАНОВЛЕНИЕ И РАЗВИТИЕ МАТЕМАТ. ЛОГИКИ: АУГУСТУС ДЕ МОРГАН ( ) УИЛЬЯМ СТЕНЛИ ДЖЕВОНС ( ) УИЛЬЯМ СТЕНЛИ ДЖЕВОНС ( ) ПЛАТОН СЕРГЕЕВИЧ ПОРЕЦКИЙ ( ) ПЛАТОН СЕРГЕЕВИЧ ПОРЕЦКИЙ ( ) ЧАРЛЗ САНДЕРС ПИРС ( ) ЧАРЛЗ САНДЕРС ПИРС ( ) КЛОД ШЕННОН ( ) - АЛГЕБРА ЛОГИКИ ПРИМЕНИМА ДЛЯ ОПИСАНИЯ РЕЛЕЙНО-КОНТАКТНЫХ И ЭЛЕКТРОННО- ЛАМПОВЫХ СХЕМ. КЛОД ШЕННОН ( ) - АЛГЕБРА ЛОГИКИ ПРИМЕНИМА ДЛЯ ОПИСАНИЯ РЕЛЕЙНО-КОНТАКТНЫХ И ЭЛЕКТРОННО- ЛАМПОВЫХ СХЕМ.
ВОПРОС 3 ДИАГРАММЫЭЙЛЕРА-ВЕННА.
Диаграммы Эйлера-Венна (правильность силлогизмов). А В С Если все А суть В, то все А суть С
Диаграммы Эйлера-Венна (правильность силлогизмов). А В С Если все А суть В и ни одно В не является С, то ни одно А не является С.
ВОПРОС 4 ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКОЙ ЛОГИКИ.
1) Логика оказала влияние на развитие математики, прежде всего теории множеств, функциональных систем, алгоритмов, рекурсивных функций. 2) Идеи и аппарат логики используется в кибернетике, ВТ и электротехнике (построены компьютеры на основе законов математической логики). логики). 3) В гуманитарных науках (логика, криминалистика). 4) Математическая логика является средством для изучения деятельности мозга - для решения этой самой важной проблемы биологии и науки вообще.
ВОПРОС 5 Алгебра высказываний. Простые и сложные высказывания.
АЛГЕБРА ЛОГИКИ (ВЫСКАЗЫВАНИЙ) - РАЗДЕЛ МАТЕМАТИЧЕСКОЙ ЛОГИКИ, ИЗУЧАЮЩИЙ ВЫСКАЗЫВАНИЯ И ЛОГИЧЕСКИЕ ОПЕРАЦИИ НАД НИМИ.
ВЫСКАЗЫВАНИЕ - ЭТО ПОВЕСТВОВАТЕЛЬНОЕ ПРЕДЛОЖЕНИЕ, О КОТОРОМ МОЖНО СКАЗАТЬ, ЧТО ОНО ИСТИННО ИЛИ ЛОЖНО. 1) Земля - планета Солнечной системы. 2) 2+8
ВЫСКАЗЫВАНИЕМ НЕ ЯВЛЯЕТСЯ: 1) ВОСКЛИЦАТЕЛЬНЫЕ И ВОПРОСИТЕЛЬНЫЕ ПРЕДЛОЖЕНИЯ. 2) ОПРЕДЕЛЕНИЯ. 3) ПРЕДЛОЖЕНИЯ ТИПА: «ОН СЕРОГЛАЗ» «ОН СЕРОГЛАЗ» «X 2 -4X+3=0» «X 2 -4X+3=0»
ВЫСКАЗЫВАНИЕ, КОТОРОЕ МОЖНО РАЗЛОЖИТЬ НА ЧАСТИ, БУДЕМ НАЗЫВАТЬ СЛОЖНЫМ, А НЕРАЗЛОЖИМОЕ ДАЛЕЕ ВЫСКАЗЫВАНИЕ - ПРОСТЫМ. 1) На улице идет дождь. (А) 2) На улице идет дождь. (В) 3) На улице светит солнце и на улице идет дождь. (А и В) 4) На улице светит солнце или на улице идет дождь. (А или В) А 1; В 0
ВОПРОС 6 ОСНОВНЫЕ ОПЕРАЦИИ АЛГЕБРЫ ВЫСКАЗЫВАНИЙ.
ИНВЕРСИЯ (ЛОГИЧЕСКОЕ ОТРИЦАНИЕ) - ПРИСОЕДИНЕНИЕ ЧАСТИЦЫ «НЕ» К СКАЗУЕМОМУ ДАННОГО ПРОСТОГО ВЫСКАЗЫВАНИЯ ИЛИ ПРИСОЕДИНЕНИЕ СЛОВ «НЕВЕРНО ЧТО...» КО ВСЕМУ ВЫСКАЗЫВАНИЮ. ИНВЕРСИЯ (ЛОГИЧЕСКОЕ ОТРИЦАНИЕ) - ПРИСОЕДИНЕНИЕ ЧАСТИЦЫ «НЕ» К СКАЗУЕМОМУ ДАННОГО ПРОСТОГО ВЫСКАЗЫВАНИЯ ИЛИ ПРИСОЕДИНЕНИЕ СЛОВ «НЕВЕРНО ЧТО...» КО ВСЕМУ ВЫСКАЗЫВАНИЮ. ИНВЕРСИЯ ЛОГИЧЕСКОЙ ПЕРЕМЕННОЙ ИСТИННА, ЕСЛИ САМА ПЕРЕМЕННАЯ ЛОЖНА, И, НАОБОРОТ, ИНВЕРСИЯ ЛОЖНА, ЕСЛИ ПЕРЕМЕННАЯ ИСТИННА.
ДИЗЪЮНКЦИЯ (ЛОГИЧЕСКОЕ СЛОЖЕНИЕ) - СОЕДИНЕНИЕ ДВУХ ВЫСКАЗЫВАНИЙ А И В В ОДНО С ПОМОЩЬЮ СОЮЗА «ИЛИ», УПОТРЕБЛЯЕМОГО В НЕИСКЛЮЧАЮЩЕМ ВИДЕ. ДИЗЪЮНКЦИЯ ДВУХ ЛОГИЧЕСКИХ ВЫСКАЗЫВАНИЙ ЛОЖНА ТОГДА И ТОЛЬКО ТОГДА, КОГДА ОБА ВЫСКАЗЫВАНИЯ ЛОЖНЫ.
КОНЪЮНКЦИЯ (ЛОГИЧЕСКОЕ УМНОЖЕНИЕ) - СОЕДИНЕНИЕ ДВУХ ВЫСКАЗЫВАНИЙ А И В В ОДНО С ПОМОЩЬЮ СОЮЗА «И». КОНЪЮНКЦИЯ ДВУХ ЛОГИЧЕСКИХ ВЫСКАЗЫВАНИЙ ИСТИННА ТОГДА И ТОЛЬКО ТОГДА, КОГДА ОБА ВЫСКАЗЫВАНИЯ ИСТИННЫ.
ИМПЛИКАЦИЯ - ЛОГИЧЕСКАЯ ОПЕРАЦИЯ, СООТВЕТСТВУЮЩАЯ СОЮЗУ «ЕСЛИ..., ТО...» ИМПЛИКАЦИЯ ВЫСКАЗЫВАНИЙ ЛОЖНА ЛИШЬ В СЛУЧАЕ, КОГДА А ИСТИННО, А В ЛОЖНО.
ЭКВИВАЛЕНЦИЯ - ЛОГИЧЕСКАЯ ОПЕРАЦИЯ, СООТВЕТСТВУЮЩАЯ СОЮЗУ «ТОГДА И ТОЛЬКО ТОГДА, КОГДА …» ЭКВИВАЛЕНЦИЯ ДВУХ ВЫСКАЗЫВАНИЙ ИСТИННА В ТОМ И ТОЛЬКО ТОМ СЛУЧАЕ, КОГДА ОБА ЭТИ ВЫСКАЗЫВАНИЯ ИСТИННЫ ИЛИ ЛОЖНЫ.