Теорема Пифагора в науке и жизни Выполнила Жирнова Елена ученица 8«А» класса МОУ СОШ 4 «ЦО».

Презентация:



Advertisements
Похожие презентации
1. Теорема Пифагора Теорема Пифагора 2. Применение в жизни т. Пифагора Применение в жизни т. Пифагора 3. Задачи на применение т. Пифагора Задачи на применение.
Advertisements

ТЕОРЕМА ПИФАГОРА ПРИМЕНЕНИЕ. ОБЛАСТИ ПРИМЕНЕНИЯ Строительство Астрономия Мобильная связь.
Теорема Пифагора и способы её доказательства Выполнил Мамонов Владислав ученик 9«А» класса СОШ 6.
АВТОНОМНОЕ УЧРЕЖДЕНИЕ РЕСПУБЛИКИ САХА (ЯКУТИЯ) «РЕГИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ КОЛЛЕДЖ В Г.МИРНОМ» Выполнил:Закиров Богдан Вячеславович БГУ-13/9 Косенко Владимир.
Задачи о растениях, которые несколько веков помогают изучать теорему Пифагора.
Применение теоремы Пифагора. При решении геометрических задач Диагональ d квадрата со стороной а есть гипотенуза прямоугольного равнобедренного треугольника.
Выполнил: ученик 8 класса Прищеп Вячеслав Руководитель: учитель математики Фильченко И.А. Применение теоремы Пифагора МОУ «Новопетровская основная общеобразовательная.
ПРИМЕНЕНИЕ ТЕОРЕМЫ ПИФАГОРА. В настоящее время всеобщее признание получило то, что успех развития многих областей науки и техники зависит от развития.
Теорема Пифагора и ее применение при решении задач. Урок обобщения и закрепления.
Практическое применение теоремы Пифагора. У египтян была известна задача о лотосе. «На глубине 12 футов растет лотос с 13- футовым стеблем. Определите,
Обобщающий урок по теме: «Теорема Пифагора» План урока: 1) значение теоремы Пифагора; 2) решение задач по готовым чертежам; 3) решение исторических задач.
Урок геометрии по теореме Пифагора Трофимова Людмила Викторовна учитель математики Сиверская гимназия 1.
ИСТОРИЧЕСКИЕ ЗАДАЧИ и не только Применение теоремы Пифагора.
Царица Урок геометрии в 8 классе: Теорема Пифагора.
Теорема Пифагора 8 класс.
ПРИМЕНЕНИЕ ТЕОРЕМЫ ПИФАГОРА. РАССМОТРИМ ПРИМЕРЫ ПРАКТИЧЕСКОГО ПРИМЕНЕНИЯ ТЕОРЕМЫ ПИФАГОРА. НЕ БУДЕМ ПЫТАТЬСЯ ПРИВЕСТИ ВСЕ ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ ТЕОРЕМЫ.
«Древнекитайское и древнеиндийское доказательства. Доказательство Аннариция» Брянский городской лицей 1 им. А.С.Пушкина. Проект «Теорема Пифагора» Брянск.
Урок геометрии в 8 классе Теорема Пифагора учитель математики Авраменко Н.Л. МАОУ Новоселезневская СОШ 2011.
Доказательство теоремы Пифагора, основанного на теории подобия Выполнил: Дедов Кирилл, 8В Руководитель: Макарова Т.П.
Решение задач на применение теоремы Пифагора Автор: Рычкова Валентина Геннадьевна, учитель математики учитель математики СОУ «Свердловская СОШ» СОУ «Свердловская.
Транксрипт:

Теорема Пифагора в науке и жизни Выполнила Жирнова Елена ученица 8«А» класса МОУ СОШ 4 «ЦО».

Основные задачи Заглянуть в историю доказательств теоремы Узнать различные способы доказательства теоремы Пифагора Рассмотреть исторические задачи и познакомиться с применение теоремы Пифагора в жизни человека

Теорема Пифагора В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов. Это простота - красота - значимость

История теоремы Пифагора Исторический обзор начинается с древнего Китая. Египтяне строили прямые углы при помощи таких треугольников, используя натягивание верёвки. В древнем Вавилоне в 2000 г. до н.э. проводили приближённое вычисление гипотенузы прямоугольного треугольника. Теорема Пифагора обнаружена в папирусе времён фараона Аменемхета и вавилонских клинописных табличках VII-V в. до н.э. Сегодня принято считать, что Пифагор дал первое доказательство носящей его имя теоремы, но оно не сохранилось.

Способы доказательства теоремы Пифагора Через подобие треугольников Метод площадей Доказательство Евклида Доказательство Вальдхейма Векторное доказательство Доказательство методом разложения Доказательство Гофмана существует более 500 различных способов доказательства теоремы.

Исторические задачи Задача индийского математика 12 века Бхаскары: «На берегу реки рос тополь одинокий Вдруг ветра порыв его ствол надломал. Бедный тополь упал. И угол прямой С течением реки его ствол составлял. Запомни теперь, что в этом месте река В четыре лишь фута была широка. Верхушка склонилась у края реки. Осталось три фута всего от ствола, Прошу тебя, скоро теперь мне скажи: У тополя как велика высота?» Решение: пусть СD – высота тополя, DC=CB + BD, по теореме Пифагора имеем АС ² + СВ ² = АВ ², 3 ² + 4 ² = 25, АВ = 5 футов. CD = 3+5 = 8(футов) Ответ: 8 футов.

Древнеиндийская задача Над озером тихим С полфута размером Он рос одиноко. И ветер порывом Отнес его в сторону. Нет Боле цветка над водой. Нашёл же рыбак его ранней весной В двух футах от места, где рос. Итак, предложу я вопрос: Как озера вода здесь глубока? Какова глубина в современных единицах длины? Решение: Выполним чертёж к задаче и обозначим глубину озера DС =Х, тогда BD = AD = Х + 0,5. Из треугольника DCB по теореме Пифагора имеем CD² = DB² – CB². (Х + 0,5 )² – Х² = 2², Х² + Х² + 0,25 – Х² = 4, Х = 3,75. Таким образом, глубина озера составляет 3,75 фута. 3, 75 0,3 = 1,125 (м) Ответ: 3,75 фута или 1, 125 м.

ОБЛАСТИ ПРИМЕНЕНИЯ Строительство Астрономия Мобильная связь

Строительство Окна Крыши Молниеотводы

Окна В романской архитектуре часто встречается мотив, представленный на рисунке. Если b обозначает ширину окна, то радиусы полуокружностей будут равны R = b / 2 и r = b / 4. Радиус p внутренней окружности можно вычислить из прямоугольного треугольника, изображенного на рис. пунктиром. Гипотенуза этого треугольника, проходящая через точку касания окружностей, равна b/4+p, один катет равен b/4, а другой b/2-p. По теореме Пифагора имеем: (b/4+p) ²=( b/4) ²+( b/2-p) ² или b²/16+ bp/2+p²=b²/16+b²/4-bp+p², откуда bp/2=b²/4-bp. Разделив на b и приводя подобные члены, получим: (3/2)p=b/4, p=b/6.

Строительство крыши При строительстве домов и коттеджей часто встает вопрос о длине стропил для крыши, если уже изготовлены балки. Например: в доме задумано построить двускатную крышу (форма в сечении). Какой длины должны быть стропила, если изготовлены балки AC=8 м., и AB=BF. Решение: Треугольник ADC - равнобедренный AB=BC=4 м., BF=4 м. Если предположить, что FD=1,5 м., тогда: А) Из треугольника DBC: DB=2,5 м., Б) Из треугольника ABF:

Молниеотвод Известно, что молниеотвод защищает от молнии все предметы, расстояние которых от его основания не превышает его удвоенной высоты. Необходимо определить оптимальное положение молниеотвода на двускатной крыше, обеспечивающее наименьшую его доступную высоту. Решение: По теореме Пифагора h2 a2+b2, значит h(a2+b2)1/2.

Астрономия На этом рисунке показаны точки A и B и путь светового луча от A к B и обратно. Путь луча показан изогнутой стрелкой для наглядности, на самом деле, световой луч - прямой. Какой путь проходит луч? Поскольку свет идет туда и обратно одинаковый путь, спросим сразу: чему равно расстояние между точками?

Мобильная связь Какую наибольшую высоту должна иметь антенна мобильного оператора, чтобы передачу можно было принимать в радиусе R=200 км? (радиус Земли равен 6380 км.) Решение: Пусть AB= x, BC=R=200 км, OC= r =6380 км. OB=OA+AB OB=r + x. Используя теорему Пифагора, получим ответ: 2,3 км.

Суть истины вся в том, что она – навечно, Когда хоть раз в прозрении её увидим свет, И теорема Пифагора через столько лет Для нас, как для него, бесспорна, безупречна… А. Шамиссо Своей работой я постаралась доказать, что математика служит верой и правдой человеку, помогая ему в изучении наук и в жизни, этим самым делая ему по-царски щедрый подарок.