Способы доказательства теорема Пифагора Подготовила презентацию Ученица 8 «А» класса МБОУ СОШ 19 Авакян Нелля Проверила: Куликова Е.И.

Презентация:



Advertisements
Похожие презентации
Теорема Пифагора Подготовила ученица 9Б класса Гаджиева Хураман.
Advertisements

Площадь квадрата Презентация по геометрии ученицы 8 «В» класса Жиряковой Марии.
Теорема Пифагора История, доказательство, применение Презентацию подготовила ученица 8А класса ГОУ Сош 119 Алмазова Александра.
– древнегреческий философ, математик и мистик, создатель религиозно - философской школы Пифагорейцев. Был назван « величайшим эллинским мудрецом » Геродотом.
Теорема Пифагора. Формулировки теоремы Геометрическая Геометрическая Геометрическая Алгебраическая Алгебраическая Алгебраическая.
( гг. до н. э) Подготовила ученица 8-а класса Кагонян Розалина Учитель- Кичатова О. Н.
Теорема Пифагора. Геометрия, 8 класс.. Задачи. 1.Найти площадь МРК.2. Доказать, что KMNP – квадрат. М Р К 12 см 10 см 60° A BC D K M N P.
Теорема Пифагора. Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.
Теорема Пифагора. Дилленбург Лилии 8 «Б».. Формулировки. В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей.
Презентация по теме: "Теорема Пифагора"
Теорема Пифагора Выполнил ученик 8а класса Рякин Илья.
Пифагор – основоположник современной математики Пифагор – основоположник современной математики Презентацию выполнила ученица 11 класса Ильинской СОШ Семенычева.
Находясь в плену Пифагору было чему поучиться у вавилонских математиков, так как вавилонская математика была более развитой, чем египетская. Но в 530.
Пифагор – основоположник современной математики Пифагор – основоположник современной математики.
Пифагор – основоположник современной математики Пифагор – основоположник современной математики.
Теорема Пифагора. Пифагор Самосский древнегреческий философ, математик и мистик, создатель религиозно - философской школы пифагор - ейцев. Историю жизни.
Подготовила Яцук Ольга 8 А класс ЛГ МБОУ «СОШ 5» 2014 год.
Презентация по теме: Пифагор и его жизнь Работу выполняла: Дорогова Мария.
Теорема Пифагора Швец Владислав, 10 «а» класс.. Cодержание 1 Общее понятие 1 Общее понятие 1 Общее понятие 1 Общее понятие 2 Формулировки 2 Формулировки.
Самые интересные доказательства теоремы Пифагора
Транксрипт:

Способы доказательства теорема Пифагора Подготовила презентацию Ученица 8 «А» класса МБОУ СОШ 19 Авакян Нелля Проверила: Куликова Е.И.

Цель: Рассмотреть различные варианты доказательства теоремы Пифагора

Биография Пифагора Великий ученый Пифагор родился около 570 г. до н.э. на острове Самосе. Отцом Пифагора был Мнесарх, резчик по драгоценным камням. Имя же матери Пифагора не известно. По многим античным свидетельствам, родившийся мальчик был сказочно красив, а вскоре проявил и свои незаурядные способности. За всю свою жизнь Пифагор также побывал в, где изучил язык и религию египтян. В Кротоне Пифагор учредил нечто вроде религиозно- этического братства или тайного монашеского ордена, члены которого обязывались вести так называемый пифагорейский образ жизни. Это был одновременно и религиозный союз, и политический клуб, и научное общество. Многие из проповедуемых Пифагором принципов достойны подражания и сейчас.

Теорема Пифагора Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.

Геометрическая формулировка теоремы Изначально теорема была сформулирована следующим образом: В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.

Алгебраическая формулировка В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Рассмотрим прямоугольный треугольник с катетами a, b и гипотенузой с. Докажем, что.Достроим треугольник до квадрата со стороной a+b так, как показано на рисунке. Площадь S этого квадрата равна. С другой стороны, этот квадрат составлен из четырёх равных прямоугольных треугольников, площадь каждого из которых равна, и квадрата со стороной с, поэтому Доказательство В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника.

Доказательства На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии. Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства.

Доказательство через подобные треугольники Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим её основание через H. Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC. Введя обозначения Получаем Что эквивалентно Сложив, получаем или Что и требовалось доказать

Доказательство через равнодополняемость Расположим четыре равных прямоугольных треугольника так, как показано на рисунке 1. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол 180°. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и площади внутреннего квадрата.

Доказательство Евклида Идея доказательства Евклида состоит в следующем: попробуем доказать, что половина площади квадрата, построенного на гипотенузе, равна сумме половин площадей квадратов, построенных на катетах, а тогда и площади большого и двух малых квадратов равны.

Спасибо за внимание!!!