Теорема Виета. Сумма корней приведенного квадратного трехчлена x 2 + px + q = 0 равна его второму коэффициенту p с противоположным знаком, а произведение.

Презентация:



Advertisements
Похожие презентации
Теорема Виета Теорема Виета замечательна тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие.
Advertisements

Теорема Виета. Квадратное уравнение Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где a, b, с R (a 0). Числа a, b, с носят следующие названия:
Парамонова Арсения 8 V класса.. Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где a, b, с R (a 0). Числа a, b, с носят следующие названия:
Теорема Виета Подготовил Кучер Ярослав. Квадратное уравнение Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где a, b, с R (a 0). Числа.
Теорема Виета. Биография Франсуа Виет ( ) французский математик. Разработал почти всю элементарную алгебру. Известны «формулы Виета», дающие зависимость.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где a, b, с R (a 0). Числа a, b, с носят следующие названия: a - первый коэффициент, b -
Никогда не считай, что ты знаешь все, что тебе уже больше нечему учиться. Н. Д. Зеленский.
Теорема Виета Автор :Бондарь Дмитрий 8 А класс Школа 1.
Квадратные уравнения ax2+bx+c=0. Уравнение вида ax 2 +bx+c=0 называется квадратным уравнением, где a 0. Число a – старший коэффициент уравнения Число.
Теорема Виета. Разложение на множители квадратного трехчлена.
Примеры решения квадратных уравнений Уравнение Корни уравнения Пример 1.ax 2 =0 x=0 2x 2 =0, x=0 2. ax 2 +вx=0 x=0, x=-в/a 5x 2 +4x=0, x=0, x=-4/5 3.
Решение квадратных уравнений. Формулы Виета.. Квадратные уравнения Уравнение вида ax 2 +bx+c=0, где а,b,c- некоторые коэффициенты, причем a не равно 0.
Способы решения квадратных уравнений Решить уравнение – значит найти такое значение переменной, которое обращает уравнение в верное равенство. Это значение.
Теорема Виета. Разложение на множители квадратного трехчлена. Петренко Инесса Вячеславовна, школа 261.
«Приведенное квадратное уравнение. Теорема Виета».
Франсуа Виет 1540 год - 14 февраля 1603 год. х 2 – 2009 х = 0 2 х 2 – 2008 х = 0.
Теорема Виета Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно.
Решение квадратных уравнений. Устно Назовите коэффициенты.
Примеры: х 2 + 4x + 3 = 0; x 2 – 12x + 32 = 0 Найдите произведение корней q.
Наглядный справочник по теме «Квадратные уравнения» Справочник поможет учащимся наглядно представить изучаемый материал и быстро найти необходимые сведения.
Транксрипт:

Теорема Виета

Сумма корней приведенного квадратного трехчлена x 2 + px + q = 0 равна его второму коэффициенту p с противоположным знаком, а произведение – свободному члену q. Т. е. x 1 + x 2 = – p и x 1 x 2 = q

Применение теоремы Виета Теорема Виета замечательна тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные выражения x 1 + x 2 и x 1 x 2.

Вычисление корней Так, еще не зная, как вычислить корни уравнения: x 2 + 2x – 8 = 0, мы, тем не менее, можем сказать, что их сумма должна быть равна – 2, а произведение должно равняться –8.

Пример Теорема Виета позволяет угадывать целые корни квадратного трехчлена. Так, находя корни квадратного уравнения x 2 – 7x + 10 = 0, можно начать с того, чтобы попытаться разложить свободный член (число 10) на два множителя так, чтобы их сумма равнялась бы числу 7.

Решение Это разложение очевидно: 10 = 5 2, = 7. Отсюда должно следовать, что числа 2 и 5 являются искомыми корнями.