Проценты Методическая разработка учителя математики и физики МКОУ « СОШ2 » п. Сывдарма Ямало - Ненецкого автономного округа Бокова Наталья Леонидовна.

Презентация:



Advertisements
Похожие презентации
Задачи на проценты Авторы: Дронова Алена Мельникова Кристина.
Advertisements

Выполнил: Аллаберганов Руслан Нариманович учащийся 8 класса учащийся 8 класса МОУ Малоибряйкинская ООШ МОУ Малоибряйкинская ООШ Руководитель: Бурякова.
Космачева Нина Петровна, учитель математики МОУ средней школы 8 г.Рославля Смоленской области.
Различные виды задач на проценты Учитель-репетитор Екатерина Васильевна Карпенко
Решение задач на смеси и сплавы Выполнил: Рыбаченко Иван, ученик 8 Б класса, МБОУ «Промышленновская СОШ 56». Руководитель: Майорова Р.В.
Задачи на смеси и сплавы Учитель математики Байгулова Нина Витальевна МАОУ СОШ 58 Посёлок Мулино Володарский район Нижегородская область.
Учитель методист РСШ С.И. Абрамова с.Ракиты 2012 г.
Работа ученицы 7 класса Г МОУ «СОШ 24»г. Северодвинска Лысковской Татьяны Учитель математики Паршева В.В. 2008г.
Решение задач на смеси, растворы и сплавы. Учитель математики МОУ СОШ 2 г. Кирсанова И. А. Глушкова Кирсанов, 2006 г.
Нестандартные способы решения задач на смеси и сплавы Автор: Немченко Марина Германовна, учитель математики МАОУ лицея 6 г. Тамбова.
ЗАДАЧИ НА ПРОЦЕНТЫ. Учебно-методическое пособие для школьников Учитель-репетитор Екатерина Васильевна Карпенко 1.Определение процента (стр.2). 2. Определение.
Три основные задачи на проценты Нахождение процента от числа Нахождение числа по его проценту Нахождение процентного отношения двух чисел.
ПРОЦЕНТЫ Методическая разработка учителя математики МОУ гимназия 3 г.Зеленодольска РТ Алтыновой Светланы Александровны.
Занятие 8 «Задачи на смеси, растворы, сплавы» элективного курса по математике «Процентные расчёты на каждый день» Учитель математики Чернитовского филиала.
Математика на 5 «+» Подготовка к ГИА (задачи 2 части) Задачи на процентное содержание и концентрацию Подготовила учитель математики Кашкаха Н.В. МБОУ СОШ.
«Материалы на стенд» Этапы работы над задачей 1. Анализ текста задачи. 2. Составление таблицы, схемы – краткая запись условия. Поиск решения 3. Выбор.
Решение текстовых задач. Учитель математики МОУ лицей 90 Корнилова Тамара Юрьевна 2011г.
Занятия с учащимися по теме: «Задачи на смеси, сплавы, растворы». Учитель математики Подгурская Н.А.
5 класс Вычисли устно 0,5 * 8 + 1,2 - 2,5 : 3 ВЫРАЗИ В САНТИМЕТРАХ 3,23 ДМ = 62,5 ДМ = 1,32 М =
Процентные расчёты на каждый день. Что такое процент? Сотая часть метра – это сантиметр, сотая часть рубля – копейка, сотая часть центнера – килограмм.
Транксрипт:

Проценты Методическая разработка учителя математики и физики МКОУ « СОШ2 » п. Сывдарма Ямало - Ненецкого автономного округа Бокова Наталья Леонидовна

Введение Задачи на части и проценты часто вызывают затруднения у учащихся. Причина такой ситуации, на мой взгляд, в том, что тема «Проценты» изучается в классах, когда собственно математики еще нет, изучается непродолжительно и, наконец, к задачам на части и проценты не возвращаются в старших классах. Задачи на части и проценты часто вызывают затруднения у учащихся. Причина такой ситуации, на мой взгляд, в том, что тема «Проценты» изучается в классах, когда собственно математики еще нет, изучается непродолжительно и, наконец, к задачам на части и проценты не возвращаются в старших классах. В своей работе я хотела показать методику объяснения решения задач на проценты самым слабым ученикам. В своей работе я хотела показать методику объяснения решения задач на проценты самым слабым ученикам.

Проценты Типы задач 1 тип: нахождение части от числа; 2 тип: нахождение числа по его части 3 тип: определение, какую часть числа а составляет число в.

Нахождение части числа Пусть дан отрезок АВ, длина которого условно примем за единицу: АВ=1. Разделим АВ на семь равных частей. Пусть РТ- одна из этих частей. Тогда очевидно, что РТ=1/7, а так как АВ=7РТ=1, то 7*1/7=1. Зачем писать эти тривиальные равенства? Ответ прост: необходимо добиться того, чтобы учащиеся понимали и связывали арифметические операции с действиями над отрезками. В этом случае усвоение рассматриваемой темы не будет формальным, основанным на применении «правил» и «формул». Пусть дан отрезок АВ, длина которого условно примем за единицу: АВ=1. Разделим АВ на семь равных частей. Пусть РТ- одна из этих частей. Тогда очевидно, что РТ=1/7, а так как АВ=7РТ=1, то 7*1/7=1. Зачем писать эти тривиальные равенства? Ответ прост: необходимо добиться того, чтобы учащиеся понимали и связывали арифметические операции с действиями над отрезками. В этом случае усвоение рассматриваемой темы не будет формальным, основанным на применении «правил» и «формул». Итак, необходимо подчеркнуть, что запись 7*1/7 означает, что отрезок длины 1/7, отложен семь раз, дает целый отрезок длины 1. Итак, необходимо подчеркнуть, что запись 7*1/7 означает, что отрезок длины 1/7, отложен семь раз, дает целый отрезок длины 1. Рассмотрим отрезок КС=3/7. Ясно, что 3/7=3*1/7=1/7+1/7+1/7. Здесь опять такая же ситуация: 3/7 есть отрезок, полученный откладыванием отрезка длины 1/7 три раза. Рассмотрим отрезок КС=3/7. Ясно, что 3/7=3*1/7=1/7+1/7+1/7. Здесь опять такая же ситуация: 3/7 есть отрезок, полученный откладыванием отрезка длины 1/7 три раза. Обобщим полученные результаты. Пусть длина отрезка АВ выражена числом р. Разделим АВ на q равных частей. Тогда каждый из полученных q отрезков будет иметь длину р/ q. Обобщим полученные результаты. Пусть длина отрезка АВ выражена числом р. Разделим АВ на q равных частей. Тогда каждый из полученных q отрезков будет иметь длину р/ q. Если теперь взять п таких отрезков длины п р/ q. Имеем равенство Если теперь взять п таких отрезков длины п р/ q. Имеем равенство р/ q + р/ q +…+ р/ q = п р/ q р/ q + р/ q +…+ р/ q = п р/ q

Иное рассмотрение Посмотрим теперь на все сказанное с иной точки зрения. Равенство 1/7*1=1/7 можно рассматривать как нахождение 1/7-й части 1. Аналогично произведение 1/q*р дает величину 1/q-й части числа р. Посмотрим теперь на все сказанное с иной точки зрения. Равенство 1/7*1=1/7 можно рассматривать как нахождение 1/7-й части 1. Аналогично произведение 1/q*р дает величину 1/q-й части числа р. Теперь полезно задать вопрос: что означает нахождение ¾ числа 16 в терминах деления отрезков ? Теперь полезно задать вопрос: что означает нахождение ¾ числа 16 в терминах деления отрезков ? Правильный вариант ответа такой: чтобы найти ¾ от 16, нужно отрезок длины 16 единиц разделить на четыре равные части и затем взять отрезок, равный трем таким частям: 16/4=4, 3*4=12. Поэтому ¾ от 16 равно 12. Тот же самый результат дает формальное умножение ¾ на 16. Слово «от» является ключевым для решения задачи. Увидя его, ребенок запомнит, что всегда надо число умножать на данную дробь. Правильный вариант ответа такой: чтобы найти ¾ от 16, нужно отрезок длины 16 единиц разделить на четыре равные части и затем взять отрезок, равный трем таким частям: 16/4=4, 3*4=12. Поэтому ¾ от 16 равно 12. Тот же самый результат дает формальное умножение ¾ на 16. Слово «от» является ключевым для решения задачи. Увидя его, ребенок запомнит, что всегда надо число умножать на данную дробь. Нужно отдавать себе отчет в том, что при хорошем усвоении темы «Нахождении части числа» задачи на проценты не вызывают никаких затруднений. Нужно отдавать себе отчет в том, что при хорошем усвоении темы «Нахождении части числа» задачи на проценты не вызывают никаких затруднений.

Процент Итак, вначале даем определение процента: Итак, вначале даем определение процента: 1 % от числа а есть 1/100 числа а; 1 % от числа а есть 1/100 числа а; р % от числа а есть р/100 числа а. р % от числа а есть р/100 числа а. Отсюда следует, что р % от числа а равно р * а/100. Отсюда следует, что р % от числа а равно р * а/100.

Нахождение числа по известной его части Рассмотрим теперь постановку обратной задачи: нахождение числа по известной его части. Рассмотрим теперь постановку обратной задачи: нахождение числа по известной его части. Здесь проще всего воспользоваться понятием уравнения: Здесь проще всего воспользоваться понятием уравнения: пусть ג – я часть неизвестного числа х равна заданному числу а. Тогда на основании определения части числа имеем: х * ג = а. Отсюда легко находим: пусть ג – я часть неизвестного числа х равна заданному числу а. Тогда на основании определения части числа имеем: х * ג = а. Отсюда легко находим: х = а/ ג. х = а/ ג.

Пример Найти число, если 12/17 его равны 60. Найти число, если 12/17 его равны 60. Я предлагаю ученикам запомнить ключевое слово «это». Я предлагаю ученикам запомнить ключевое слово «это». Например, 12/17 это 60. Например, 12/17 это 60. Если ребенок в задаче подставит это слово в условие, то сразу поймет к какому типу относится задача. Он будет знать, что число 60 надо разделить на дробь 12/17 (60 / 12/17 = 85). Если ребенок в задаче подставит это слово в условие, то сразу поймет к какому типу относится задача. Он будет знать, что число 60 надо разделить на дробь 12/17 (60 / 12/17 = 85). Ответ в этой задаче: 85. Ответ в этой задаче: 85.

3 тип задач на проценты К третьему типу задач относятся задачи на нахождение определения того, какую дробь одно число составляет от другого. К третьему типу задач относятся задачи на нахождение определения того, какую дробь одно число составляет от другого. Например, задача: «от поселка до города 5 км. Турист прошел 3 км. Какую часть пути прошел турист? Например, задача: «от поселка до города 5 км. Турист прошел 3 км. Какую часть пути прошел турист? Решение задачи: Решение задачи: 3/5 * 100 % = 60 % 3/5 * 100 % = 60 % Ответ: турист прошел 60 % пути. Ответ: турист прошел 60 % пути. 3 км 5км

Процентное содержание Часто при решении задач по химии в старших классах приходится сталкиваться с понятием процентное содержание, р %-й раствор. Часто при решении задач по химии в старших классах приходится сталкиваться с понятием процентное содержание, р %-й раствор. Задача: пусть в ведре 10 л соленой воды. Если процентное содержание соли в нем составляет, например, 15 %, то это значит, что в этом ведре 10*0,15=1,5 кг соли. 10 л воды весят 10 кг, а удельный вес воды равен 1000кг/м 3. Говорят также, что в ведре 15 % раствор соли Задача: пусть в ведре 10 л соленой воды. Если процентное содержание соли в нем составляет, например, 15 %, то это значит, что в этом ведре 10*0,15=1,5 кг соли. 10 л воды весят 10 кг, а удельный вес воды равен 1000кг/м 3. Говорят также, что в ведре 15 % раствор соли

Задачи на сплавы Часто встречаются задачи на сплавы. Часто встречаются задачи на сплавы. Есть сплав только двух металлов: олова и цинка. Пусть вес олова и цинка в сплаве составляет соответственно 10 и 15 кг. Каково процентное содержание олова и цинка в сплаве? Есть сплав только двух металлов: олова и цинка. Пусть вес олова и цинка в сплаве составляет соответственно 10 и 15 кг. Каково процентное содержание олова и цинка в сплаве? Под процентным содержанием олова (цинка) понимается часть, которую составляет вес олова (цинка) от веса всего сплава. Так как вес всего сплава равен 25 кг, то вес олова составляет 10/25=0,4 веса сплава, соответственно вес цинка составляет 15/25=0,6 веса сплава. Следует обратить внимание на то, что 0,4 +0,6 = 1,0. Если найденные части выразить теперь в сотых долях частей, то получим значение этих частей, выраженное в процентах: 40 и 60 %. Под процентным содержанием олова (цинка) понимается часть, которую составляет вес олова (цинка) от веса всего сплава. Так как вес всего сплава равен 25 кг, то вес олова составляет 10/25=0,4 веса сплава, соответственно вес цинка составляет 15/25=0,6 веса сплава. Следует обратить внимание на то, что 0,4 +0,6 = 1,0. Если найденные части выразить теперь в сотых долях частей, то получим значение этих частей, выраженное в процентах: 40 и 60 %. Здесь необходимо опять подчеркнуть, Здесь необходимо опять подчеркнуть, что 40 % + 60 % = 100 %. что 40 % + 60 % = 100 %. Сплав 100% 40 % олова 60 % цинка

Концентрация Термин «концентрация» часто встречается в химии, там,где рассматриваются различные соединения. Дадим простейшее определение концентрации одного вещества в соединении по массе (весу). Если концентрация вещества в соединении по массе составляет р %, то это означает, что масса этого вещества составляет р % от массы всего соединения. Например, если концентрация серебра в сплаве 300г составляет 87 %, то в этом сплаве 0,87 *300 = 261 г чистого серебра.

Стандарты математического образования Выпускник основной школы должен знать: выражать отношение чисел в процентах, записывать процент в виде дроби; находить процент от заданного числа. Выпускник основной школы должен знать: выражать отношение чисел в процентах, записывать процент в виде дроби; находить процент от заданного числа. Примеры: Примеры: а) Выразите отношение данных чисел в процентах: 2 к 5; 3 к 4; 17 к 25; 19 к 20; 31 к 50. (2/5*100 % = 40 %). б) Запишите в виде десятичной дроби:8 %; 29 %; 53 %. (8 % = 0,08). в) Сколько процентов числа составляет его: половина, четвертая часть, пятая часть? (50 %, 25 %, 20 %) г) В весеннем кроссе приняли участие от 9 а класса 9 человек и от 9 б – 8 человек. В 9 а учатся 30 человек, а в 9 б – 25 человек. Какой процент учеников класса принял участие в кроссе? Где он был больше? (9/30*100=30 (%), 8/25*100=32(%). Ответ:30 % и 32 %; больше в 9 б классе). д) Найти: а) 25 % от 48; б)5 % числа 120; в) 20 % числа 140; г) 16 % числа 75.(0,25 * 48 = 12). е) Товар стоил руб. Затем он подешевел на 8 %. Найдите новую стоимость этого товара. (35000*0,08=2800(р.), =32200(р.))

Задачи вступительных экзаменов ( Московский государственный Горный университет 1999 г.) 1. На сколько процентов уменьшится дробь, если её числитель уменьшить на 85 %, а знаменатель уменьшить на 25 %? 1. На сколько процентов уменьшится дробь, если её числитель уменьшить на 85 %, а знаменатель уменьшить на 25 %? Решение. Пусть первоначальная дробь имеет ид а/b. Тогда после уменьшения числителя и знаменателя она примет вид (а – 0,85а) / (b – 0/25b) = 0,15а/0,75b = 0,2а/b. Решение. Пусть первоначальная дробь имеет ид а/b. Тогда после уменьшения числителя и знаменателя она примет вид (а – 0,85а) / (b – 0/25b) = 0,15а/0,75b = 0,2а/b. Дробь уменьшилась на 0,8 а/b. Дробь уменьшилась на 0,8 а/b. Составим пропорцию: а/b – 100% 0,8 а/b - х % Ответ: на 80 % Составим пропорцию: а/b – 100% 0,8 а/b - х % Ответ: на 80 %

Об авторе Мой стаж работы в школе – 32 года. Мой стаж работы в школе – 32 года. Моя цель в обучении математике – воспитать уверенность у учащихся в своих математических силах, научить школьников рассуждать. Моя цель в обучении математике – воспитать уверенность у учащихся в своих математических силах, научить школьников рассуждать. Помочь преодолеть затруднения в решении задач на других предметах в школе. Помочь преодолеть затруднения в решении задач на других предметах в школе.

Заключение В своей небольшой презентации я предложила свой вариант рассмотрения темы «Проценты», показала, где в дальнейшем встречаются задачи на проценты, показала практическое применение этих задач на уроках химии, на вступительных экзаменах. В своей небольшой презентации я предложила свой вариант рассмотрения темы «Проценты», показала, где в дальнейшем встречаются задачи на проценты, показала практическое применение этих задач на уроках химии, на вступительных экзаменах.