ЦЕЛЫЕ УРАВНЕНИЯ 9 класс. УСТНАЯ РАБОТА Решите уравнение: Сколько корней имеет линейное и квадратное уравнение?

Презентация:



Advertisements
Похожие презентации
ЦЕЛЫЕ УРАВНЕНИЯ 9 класс Автор: Горохова Л.И.. УСТНАЯ РАБОТА Решите уравнение: Сколько корней имеет линейное и квадратное уравнение?
Advertisements

Уравнения Цель: систематизировать и обобщить решение различных видов уравнений.
Решение целых уравнений. 9 класс. Урок 34.. УСТНАЯ РАБОТА : Решите уравнение : ВОПРОС : Сколько корней имеет линейное и квадратное уравнение ?
Опарина Елена Анатольевна учитель высшей категории, руководитель городского методического объединения учителей математики.
ЦЕЛЫЕ УРАВНЕНИЯ 9 класс Методическая разработка учителя математики Тасуевой Н.Т., МОУ СОШ 105, г.Волгоград.
Урок для 9 класса Автор : Пилипенко Галина Николаевна, учитель математики, ГОУ Лицей 1589, г. Москва Уравнения, приводимые к квадратным.
Франсуа Виет( )- "отец буквенной алгебры". Родился Франсуа в Фонтене - ле Конт (Франция). По профессии юрист. Заинтересовавшись астрономией,
АлгебраАлгебра. Что же такое Алгебра? Алгебра есть не что иное, как математический язык, приспособленный для обозначения отношений между количествами.
Формула корней квадратного уравнения Левшина Мария Александровна учитель математики.
«Решения и образование ни одному человеку не могут быть даны и сообщены. Всякий, кто желает к ним приблизиться, должен достигнуть этого собственными силами.»
Целые уравнения третьей и четвёртой степени работу выполнили: Жидкова Эльвира 9 В класс Киселёва Мария 9 В класс 2006 г.
Числа Комплексные числа. N (+;*) Z (+;*;-) Q (+;*;-;:) R (+; *;-;:;корень)
Решение уравнений, приводимые к квадратным (алгебра 9 класс) МОУ СОШ 2 9 в класс Учитель: Иркашева Татьяна Биктаировна.
Франсуа Виет Выполнила: Лукашева К.. Франсуа Виет Знаменитый французский ученый Франсуа Виет ( )был по профессии адвокатом. Свободное время он.
Учитель математики: Банькова Наталья ВалерьевнаУчитель математики: Банькова Наталья Валерьевна.
Квадратный трёхчлен Квадратный трёхчлен Квадратные уравнения Определение квадратного трёхчлена Корни квадратного трёхчлена.
Выполнила работу: Ляпушкина Юлия. Приблизительно в 850 году н.э. арабский ученый математик Мухаммед бен Муса ал-Хорезм (из города Хорезма на реке Аму-Дарья)
Рене Декарт (французский математик) « Для разыскания истины вещей необходим метод »
МКОУ «Нижнемамонская СОШ 1 Верхнемамонского муниципального района Воронежской области» Урок учителя математики Донских Ольги Васильевны в 8 классе тему.
Свойства степени Автор: Витушкина Вера Михайловна, учитель высшей категории.
Транксрипт:

ЦЕЛЫЕ УРАВНЕНИЯ 9 класс

УСТНАЯ РАБОТА Решите уравнение: Сколько корней имеет линейное и квадратное уравнение?

ЦЕЛЫЕ УРАВНЕНИЯ (уравнения первой степени) В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде и т.д. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

ЦЕЛЫЕ УРАВНЕНИЯ Новый великий прорыв в алгебре связан с именем французского ученого XVI в. Франсуа Виета. Он первым из математиков ввел буквенные обозначения для коэффициентов уравнения и неизвестных величин. А традицией обозначать неизвестные величины последними буквами латинского алфавита (x, y или z) мы обязаны его соотечественнику – Рене Декарту.

ЦЕЛЫЕ УРАВНЕНИЯ (уравнения второй степени) Впервые квадратное уравнение сумели решить математики Древнего Египта. Формулу корней квадратного уравнения называют формулой Виета – по имени французского математика конца XVI в.

ЦЕЛЫЕ УРАВНЕНИЯ (уравнения третьей степени) Если квадратные уравнения умели решать еще математики Вавилонии и Древнего Египта, то кубические уравнения оказались «крепким орешком». И всё же усилиями итальянских алгебраистов метод их решения был найден, а формула для их решения носит имя Кардано.

ЦЕЛЫЕ УРАВНЕНИЯ (уравнения четвертой степени) Метод решения уравнений четвертой степени нашёл в XV в. Лудовико Феррари, ученик Джерола- мо Кардано. Он так и называется – метод Феррари.

ЦЕЛЫЕ УРАВНЕНИЯ (уравнения высших степеней) А есть ли общие формулы для решения уравнений пятой степени и выше? Ответ на этот вопрос сумел найти норвежский математик Абель в начале XIX в., а чуть раньше его – итальянец Паоло Руффини: таких формул не существует.

Одним из приемов решения уравнений высших степеней является разложение на множители. ПРИМЕР: решить уравнение. Как называется способ, с помощью которого можно разложить левую часть уравнения на множители? Когда произведение множителей равно 0? Сколько корней имеет данное уравнение? Как вы думаете, может ли уравнение третьей степени иметь 1, 2, 4, 5 корней или ни одного корня?

САМОСТОЯТЕЛЬНАЯ РАБОТА 1 УРОВЕНЬ 352: б) -2; 2,5; 5. г) 0; 0,1; 1. д) 0; -1/3; 1/3; 4. е) 0; 4. 2 УРОВЕНЬ 356: а) -2; 0; 2. б) 0; 1. в) -1; 0. г) 0; 1; 3. д) -9; 0; 9. е) -3; -2; 0.

УСТНАЯ РАБОТА Найдите корни уравнений: Назовите степень каждого уравнения.

371. Соотнесите график с формулой.

Другим приемом решения уравнений высших степеней является введение новой переменной. ПРИМЕР: решить уравнение Введем новую переменную: Получим уравнение: Решим данное уравнение: Найдем переменную x: