ОБЪЁМ. ЦЕЛИ УРОКА: Усвоить понятие объёма многогранника; Запомнить основные свойства объёма; Узнать формулу объёма призмы.

Презентация:



Advertisements
Похожие презентации
ОБЪЁМ. ЦЕЛИ УРОКА: Усвоить понятие объёма многогранника; Запомнить основные свойства объёма; Узнать формулу объёма призмы.
Advertisements

Понятие цилиндра. МОУ СОШ 1 с.Верхняя Балкария Черекского района КБР.
Понятие цилиндра. МОУ СОШ 256 г.Фокино. Цилиндры вокруг нас.
« Вдохновение нужно в геометрии не меньше, чем в поэзии» А.С. Пушкин.
Курсовая работа учителя математики школы 13 с углубленным изучением английского языка учителя математики школы 13 с углубленным изучением английского.
Тела вращения. Цилиндр. Тела вращения Понятие цилиндра Определение цилиндра Поверхность цилиндра Развертка цилиндра Площадь поверхности и объем цилиндра.
ГЕОМЕТРИЧЕСКИЕ ТЕЛА многогранники тела вращения цилиндрпризма пирамида конус шар прямоугольный параллелепипед.
Корниенко Татьяна Федоровна Геометрия 11 класс. Если в одной из 2 параллельных плоскостей взять окружность, и из каждой ее точки восстановить перпендикуляр.
Екимова Оксана 11 б Санкт-Петербург 2008 г. Объем геометрического тела – та часть пространства, которую занимает данное тело. Объем измеряется в кубических.
Урок геометрии в 11 классе. Прямым круговым цилиндром называется тело, образованное вращением прямоугольника вокруг своей стороны. Показан цилиндр, образованный.
Выполнил: Ледов Владислав. Двугранным углом называется фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой Плоскость, перпендикулярная.
ЦИЛИНДР Геометрия 11 класс. Определение цилиндра Цилиндр – это геомет- рическое тело, огра-ниченное цилиндри-ческой поверхностью и двумя кругами с границами.
ЦИЛИНДРИЧЕСКОЕ ТЕЛО (Цилиндр) образующие О1О1 О ά β м1м1 м r ά||β L L1L1 L=L 1 А А1А1 Определение: цилиндрическим телом или цилиндром называется тело,
Объемы пространственных фигур фигурВычисление объемов геометрических тел с помощью определенного интеграла.
Объемы многогранников. Понятие Объем – это положительная величина, численное значение которой обладает следующими свойствами: Объем – это положительная.
Тела вращения Нехорошева Елена Владимировна МОУСОШ 18.
ПРЯМОЙ ЦИЛИНДР Пусть в пространстве заданы две параллельные плоскости и. F – круг в одной из этих плоскостей, например. Рассмотрим ортогональное проектирование.
Объём прямоугольного параллелепипеда, призмы, цилиндра Цель урока: познакомиться с понятием объёма; рассмотреть свойства объёмов; теорему об объёме прямоугольного.
Тема: « Площадь боковой поверхности цилиндра ». Учитель: С. С. Вишнякова.
Понятие конуса и цилиндра геометрия 11 класс Учитель математики Агаркова О.Н. Донецкая классическая гуманитарная гимназия Донецк 2014.
Транксрипт:

ОБЪЁМ. ЦЕЛИ УРОКА: Усвоить понятие объёма многогранника; Запомнить основные свойства объёма; Узнать формулу объёма призмы.

Положительная величина, характеризующая часть пространства, занимаемую телом, называется объемом тела.

Чтобы найти объём многогранника, нужно разбить его на кубы с ребром, равным единице измерения. V=20ед. 3

Общие свойства объемов тел: 1) за единицу объема принят объем куба, ребро которого равно единице длины; 2) равные тела имеют равные объемы, при перемещении тела его объем не изменяется; 3) если тело разбить на части, являющиеся простыми телами, то объем тела равен объему его частей.

Рассмотрим первое свойство. за единицу объема принят объем куба, ребро которого равно единице длины; 1см 3 1м 3 1ед 3

равные тела имеют равные объемы, при перемещении тела его объем не изменяется; Рассмотрим второе свойство. V1V1 V2V2 V 1 = V 2

Рассмотрим третье свойство. если тело разбить на части, являющиеся простыми телами, то объем тела равен объему его частей.

с а b V=abc Напомним формулу объёма прямоугольного параллелепипеда.

Как же найти объём произвольной призмы? Если есть прямая n - угольная призма (n>3), разобьем ее на конечное число прямых треугольных призм. Сложив объемы этих треугольных призм, получим объем n - угольной призмы. Ф1Ф1 Ф2Ф2 Ф3Ф3 V=V 1 +V 2 +V 3

Рассмотрим произвольную прямую треугольную призму ABCA 1 B 1 C 1. Если ABC не прямоугольный, то его можно разбить на два прямоугольных треугольника ADC и BDC. A D B A 1 D 1 B 1 C1C1 C

Докажем, что объём прямой треугольной призмы, в основании, которой прямоугольный треугольник равен произведению площади основания на высоту. V=abc :2

V=abc:2 V=Sc V=Sh

Существуют так же и наклонные призмы, объём которых, впрочем, находится так же, V=Sh. Однако этот объём можно найти и по другому….

Как и любые другие тела, многогранники имеют ОБЪЁМ ! Его можно измерить с помощью выбранной единицы измерения объёма: кубический сантиметр (см 3 ) кубический метр (м 3 ) кубический миллиметр (мм 3 ) и т.д.

Понятие цилиндра.

ЦИЛИНДР Если в одной из 2 параллельных плоскостей взять окружность, и из каждой ее точки восстановить перпендикуляр до пересечения со второй плоскостью, то получится тело, ограниченное двумя кругами и поверхностью, образованной из перпендикуляров, это тело называется цилиндром.

Цилиндры вокруг нас.

Цилиндрическая поверхность. Если в одной из двух параллельных плоскостей взять окружность, и из каждой ее точки восстановить перпендикуляр до пересечения со второй плоскостью, то получится тело, ограниченное двумя кругами и поверхностью, образованной из перпендикуляров. Это тело называется цилиндром.

Точное название определенного выше тела – прямой круговой цилиндр. Вообще, цилиндр возникает при пересечении цилиндрической поверхности, образованной множеством параллельных прямых, проведенных через каждую точку замкнутой кривой линии, и двух параллельных плоскостей.

Цилиндры бывают прямыми и наклонными в зависимости от того перпендикулярны или наклонны плоскости оснований к образующим. В основаниях могут лежать различные фигуры.

Высота, радиус и ось цилиндра. Радиусом цилиндра наз. радиус его основания. Высотой цилиндра называется расстояние между плоскостями оснований. Высота всегда равна образующей

Вспомните формулу нахождения площади круга и найдите площадь основания цилиндра, радиус которого равен 2. 4

Прямая, соединяющая центры оснований цилиндра, называется осью цилиндра. Сечение цилиндра, проходящее через ось, называется осевым сечением.

Найдите площадь осевого сечения цилиндра, если известны радиус его основания и высота. 20

Цилиндр можно рассматривать как тело, полученное при вращении прямоугольника вокруг его стороны как оси.

Любое сечение боковой поверхности цилиндра плоскостью, перпендикулярной оси – это круг, равный основанию.

Пусть цилиндр пересекли плоскостью, перпендикулярной оси и получили круг площадью 3π. Чему равен радиус цилиндра?

Высота цилиндра 7 см, а радиус основания 5 см. В цилиндре расположена трапеция так, что все ее вершины находятся на окружностях оснований цилиндра. Найти площадь трапеции и угол между основанием и плоскостью трапеции, если параллельные стороны трапеции равны 6см и 8 см. Задача.

Цилиндр Определение. Тело, которое образуется при вращении прямоугольника вокруг прямой, содержащей его сторону, называется цилиндром.

Круговой прямой цилиндр

Наклонный цилиндр Наклонный цилиндр – цилиндр, образующие которого не перпендикулярны плоскостям его оснований.

Пусть R – радиус основания; H – высота цилиндра, тогда S бок =2πRH S полн =S бок +2S осн =2πRH + +2πR 2 =2πR(R+H) V=πR 2 H Основные формулы

Объем цилиндра V=S ОСН H=πR 2 H R-радиус H-Высота