Выполняла Свириденко Юлия Геометрия владеет двумя сокровищами: одно из них – теорема Пифагора, другое- деление отрезка в среднем и крайнем отношении. И.

Презентация:



Advertisements
Похожие презентации
Человек различает окружающие его предметы по форме. Интерес к форме какого - либо предмета может быть продиктован жизненной необходимостью, а может быть.
Advertisements

Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть.
Ознакомиться с понятием «Золотое сечение» и его историей. Ознакомиться с понятием «Золотое сечение» и его историей. Выяснить алгебраический и геометрический.
Геометрия владеет двумя сокровищами: одно из них – теорема Пифагора, другое- деление отрезка в среднем и крайнем отношении. И. Кеплер История золотого.
Курсовая работа Учителя математики гимназии 248 Куликовой Анны Владимировны.
Презентация по теме: «Золотое сечение» Тамели Максима.
ЗОЛОТОЕ СЕЧЕНИЕ В АРХИТЕКТУРЕ. ИЗ ТОЧКИ В ВОССТАВЛЯЕТСЯ ПЕРПЕНДИКУЛЯР, РАВНЫЙ ПОЛОВИНЕ АВ. ПОЛУЧЕННАЯ ТОЧКА С СОЕДИНЯЕТСЯ ЛИНИЕЙ С ТОЧКОЙ А. НА ПОЛУЧЕННОЙ.
Работа по геометрии на тему: «Золотое сечение» Подготовлено: Корнет Л.И.
Выполнила: Ученица 6 класса Б МОУ СОШ 5 г. Мыски Вильценс Владислава Золотое сечение в искусстве.
Выполнил ученик 5 класса Нелюбов Артём Руководитель Воробьёва В. Д. Новосибирск 2012.
Изучить понятие «золотое сечение»; Рассмотреть применение «золотого сечения» в архитектуре, искусстве, биологии; Исследовать присутствие золотого сечения.
Пропорция Золотое сечение. «Геометрия владеет двумя сокровищами: одно из них- теорема Пифагора, другое - деление отрезка в среднем и крайнем отношении.»
Пропорция 6 класс. Пропорции Золотого сечения Уже древние греки использовали законы пропорции при строительстве зданий. Уже древние греки использовали.
Есть вещи, которые нельзя объяснить. Вот вы подходите к пустой скамейке и садитесь на нее. Где вы сядете посередине? Или, может быть, с самого края? Нет,
Построение золотого сечения. У понятия « золотое сечение » есть два смысла математический и эстетический. Они тесно связаны между собой. Эстетический.
Выполнил: Ученик 10 кл Сивожелезов Михаил МОУ СОШ 7 г.Соль –Илецк Оренбургской обл.
Принципы формообразования в природе Работу подготовила: ученица 8Б класса средней школы 16 Нарватова Наташа.
Выполнила : Гущеня Светлана Анатольевна. 2 Содержание Принцип золотого сечения Принцип золотого сечения Принцип золотого сечения Принцип золотого сечения.
Презентация к уроку по алгебре (6 класс) на тему: Презентация по теме "Золотое сечение"
Проект «Золотое сечение» Выполнила Глущенко Наталья Сергеевна учитель математики МОУ-СОШ с. Карпенка.
Транксрипт:

Выполняла Свириденко Юлия Геометрия владеет двумя сокровищами: одно из них – теорема Пифагора, другое- деление отрезка в среднем и крайнем отношении. И. Кеплер

История золотого сечения Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников. Динамические прямоугольники

Золотые пропорции в частях тела человека

Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.

Золотое сечение – гармоническая пропорция В математике пропорцией (лат. proportio) называют равенство двух отношений: a : b = c : d. Отрезок прямой АВ можно разделить на две части следующими способами: на две равные части – АВ : АС = АВ : ВС; на две неравные части в любом отношении (такие части пропорции не образуют); таким образом, когда АВ : АС = АС : ВС. Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему a : b = b : c или с : b = b : а. Геометрическое изображение золотой пропорции

Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки. Деление отрезка прямой по золотому сечению. BC = 1/2 AB; CD = BC

Из точки В восставляется перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции. Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618..., если АВ принять за единицу, ВЕ = 0, Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая – 38 частям.

Свойства золотого сечения описываются уравнением: x 2 – x – 1 = 0. Решение этого уравнения: Свойства золотого сечения создали вокруг этого числа романтический ореол таинственности и чуть ли не мистического поклонения.

Принципы формообразования в природе Все, что приобретало какую-то форму, образовывалось, росло, стремилось занять место в пространстве и сохранить себя. Это стремление находит осуществление в основном в двух вариантах – рост вверх или расстилание по поверхности земли и закручивание по спирали.

Раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе. Представление о золотом сечении будет неполным, если не сказать о спирали.

Ящерица живородящая В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции – длина ее хвоста так относится к длине остального тела, как 62 к 38.

Есть вещи, которые нельзя объяснить. Вот вы подходите к пустой скамейке и садитесь на нее. Где вы сядете посередине? Или, может быть, с самого края? Вы сядете так, что отношение одной части скамейки к другой, относительно вашего тела, будет равно примерно 1,62. Простая вещь, абсолютно инстинктивная... Садясь на скамейку, вы произвели «золотое сечение». О золотом сечении знали еще в древнем Египте и Вавилоне, в Индии и Китае. Вели-кий Пифагор создал тайную школу, где изучалась мистическая суть «золотого сечения». Евклид применил его, создавая свою геометрию, а Фидий свои бессмертные скульптуры. Платон рассказывал, что Вселенная устроена согласно «золотому сечению». А Аристотель нашел соответствие «золотого сечения» этическому закону. Высшую гармонию «золотого сечения» будут проповедовать Леонардо да Винчи и Микеланджело, ведь красота и «золотое сечение» это одно и то же. А христианские мистики будут рисовать на стенах своих монастырей пентаграммы «золотого сечения», спасаясь от Дьявола. При этом ученые от Пачоли до Эйнштейна будут искать, но так и не найдут его точного значения. Бесконечный ряд после запятой 1, Странная, загадочная, необъяснимая вещь: эта божественная пропорция мистическим образом сопутствует всему живому.