Исследовательская работа по математике Золотое сечение Выполнил: ученик 6 класса 3 Варсеев Дмитрий Брянский городской лицей 1 имени А.С.Пушкина.

Презентация:



Advertisements
Похожие презентации
1. «Золотое сечение» в математике 2. «Золотое сечение» в скульптуре 3. «Золотое сечение» в архитектуре 4. «Золотое сечение» в живописи 5. «Золотое сечение»
Advertisements

1. «Золотое сечение» в математике 2. «Золотое сечение» в скульптуре 3. «Золотое сечение» в архитектуре 4. «Золотое сечение» в живописи 5. «Золотое сечение»
Золотое сечение. Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части,
Золотое сечение Выполнила: ученица 6в класса МОУ СОШ 26 г. Благовещенска Гончарова Светлана.
Что объединяет эти произведения искусства? Аполлон Бельведерский Зевс Олимпийский Парфенос.
Проект «Золотое сечение» Выполнила Глущенко Наталья Сергеевна учитель математики МОУ-СОШ с. Карпенка.
«Золотое сечение» в живой природе Тело человека и «золотое сечение»
Золотое сечение в архитектуре Публикация создана учеником 10-Б класса Остальским Дмитрием.
2008 МОУ СОШ 80 г. Владивостока ЗОЛОТОЕ СЕЧЕНИЕ Разработал: ученик 11А класса Королёв А.А. Руководитель: учитель математики Шокарева Н.С.
Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.). На рисунках виден целый ряд закономерностей, связанных.
МОУ «Шарапово – Охотская средняя общеобразовательная школа» Проектная работа по теме: Выполнили ученики 6 класса: Симарова Анастасия Изгаршев Егор Изгаршев.
Золотое сечение Гармония форм природы и искусства.
Геометрия владеет двумя сокровищами: одно из них – теорема Пифагора, другое- деление отрезка в среднем и крайнем от- ношении. И. Кеплер.
Какое значение имеет золотое сечение в искусстве, архитектуре, скульптуре…? Какое значение имеет золотое сечение в искусстве, архитектуре, скульптуре…?
Проект выполнили ученицы 7 класса МОУ Россоловской ООШ Тикина Елена и Ковальчук Алина МОУ ООШ МОУ РОССОЛОВСКАЯ ООШ.
Исследовательская работа по математике Ученицы 10 класса Моториной Валерии.
Золоте сечение в природе. Введение Есть только два сокровища - теорема Пифагора и золотое сечение, если первое из них можно сравнить с мерой золота, то.
Презентация … презентация … по математике по теме «Золотое сечении в скульптуре »
Выполнила : Гущеня Светлана Анатольевна. 2 Содержание Принцип золотого сечения Принцип золотого сечения Принцип золотого сечения Принцип золотого сечения.
Пропорции Учение о пропорциях особенно успешно развивалось в Древней Греции С пропорциями связывались представления о красоте, порядке и гармонии Слово.
Транксрипт:

Исследовательская работа по математике Золотое сечение Выполнил: ученик 6 класса 3 Варсеев Дмитрий Брянский городской лицей 1 имени А.С.Пушкина

Список литературы

План работы

Моя задача 1 Узнать больше о Пифагоре 2 Разобрать книги Пифагора 3 Показать всем, что это интересно

Цель: сегодня мы раскроем тайны золотого сечения. Узнаем, что существует такая золотая точка на любом отрезке, которая обеспечивает, присутствие красоты, соразмерности всех частей, рассмотрим примеры где встречается золотое сечение в живой и не живой природе. Проведем практическую работу на нахождения золотого сечения.

Иоганн Кеплер Геометрия владеет двумя сокровищами: одно из них - это теорема Пифагора, а другое - деление отрезка в среднем и крайнем отношении … Первое можно сравнить с мерой золота ; второе же больше напоминает драгоценный камень.

Пифагор был первым, кто обратил внимание на особое «гармоничное» деление любого отрезка, позднее названное «золотым сечением».

Задача 1 Теорему Пифагора знает каждый, а вот что такое золотое сечение – далеко не все. Расскажем вам об этом драгоценном камне. Итак – золотое сечение – это такое деление целого на две неравные части, при котором целое так относится к большей части, как большая к меньшей. Рассмотрим деление отрезка на части в отношении равном золотому сечению.

В математике Пусть точка М делит отрезок АВ в золотом отношении.

В математике Такое обозначение принято в честь древнегреческого скульптора Фидия, жившего в V веке до н.э.

В архитектуре Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.).

Парфенон

На рисунках виден целый ряд закономерностей, связанных с золотым сечением. Пропорции здания можно выразить через различные степени числа Ф=0, На плане пола Парфенона также можно заметить "золотые прямоугольники":

Золотое соотношение мы можем увидеть и в здании собора Парижской Богоматери

Известна золотая пропорция статуи Аполлона Бельведерского: рост изображенного человека делится пупочной линией в золотом сечении.

Золотое сечение в шрифтах и бытовых предметах

В биологии бабочки У многих бабочек соотношение размеров грудной и брюшной части тела отвечает золотой пропорции. Сложив крылья, ночная бабочка образует правильный равносторонний треугольник. Но стоит развести крылья, и вы увидите тот же принцип членения тела на 2,3,5,8. Стрекоза также создана по законам золотой пропорции: отношение длин хвоста и корпуса равно отношению общей длины к длине хвоста.

В искусстве "Мона Лиза" Портрет Монны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника. Существует очень много версий об истории этого портрета.