УРОК МАТЕМАТИКИ В 5-Б КЛАССЕ. ( КОМБИНИРОВАННЫЙ УРОК ) ТЕМА УРОКА: «МАТЕМАТИЧЕСКИЙ ЯЗЫК». ЦЕЛИ УРОКА: ЦЕЛИ УРОКА: ДИДАКТИЧЕСКАЯ: УЧИТЬ УЧАЩИХСЯ ПОЛЬЗОВАТЬСЯ.

Презентация:



Advertisements
Похожие презентации
Цели урока: повторить понятие алгебраических и числовых выражений; развивать умение находить значения выражений; повторить свойства арифметических действий,
Advertisements

Математика 5 класс Математический язык Математический язык - это язык чисел, букв, символов, рисунков и чертежей. На этом языке пишут при помощи своего.
У меня растут года, Будет мне 17, Где работать мне тогда, Чем заниматься?
МОУСОШ с. Донское Выполнила: учитель математики Фролова И.И г.
ФОРМУЛЫ ЦЕЛЬ: Ввести определение формулы; рассмотреть примеры формул. Привить практические навыки и умения читать и записывать формулы; уметь производить.
Урок математики во 2 классе. Тема: «Свойства сложения». Составила: Харузина И.В.
Закрепление изученного о составе однозначных чисел. Закрепить знания состава однозначных чисел, формировать умения составлять равенства на сложение и вычитание.
Математика Законы арифметических действий самостоятельная работа устная работа формулировка законов арифметических действий.
ПРАВИЛА Как найти площадь прямоугольника, если известны его стороны? Как найти периметр прямоугольника, если известны его стороны? Что общего в записанных.
Знание - самое превосходное из владений. Все стремятся к нему, само оно не приходит. Абу-р-Райхан ал-Буруни. Учитель математики и информатики: Мышаева.
Учитесь, дерзайте, не унывайте! Урок в 8 классеУчитесь, дерзайте, не унывайте! Урок в 8 классе.
ПРАВИЛА Как найти площадь прямоугольника, если известны его стороны? Как найти периметр прямоугольника, если известны его стороны? Что общего в записанных.
«ФОРМУЛЫ КВАДРАТА СУММЫ И КВАДРАТА РАЗНОСТИ» УРОК-ИССЛЕДОВАНИЕ УРОК-ИССЛЕДОВАНИЕ ПО АЛГЕБРЕ В 7 КЛАССЕ Учитель математики Кагарманова Г.С.
Переместительное свойство умножения Урок математики во 2в классе. МОУСОШ 44 Учитель: Ауман Елена Николаевна.
Презентация к уроку математики в 6 «в» классе Презентация к уроку математики в 6 «в» классе «Решение уравнений»
ЧЕМУ ТЫ НАУЧИЛСЯ В НАЧАЛЬНОЙ ШКОЛЕ ? УЧИТЕЛЬ: ШУВАЛ Н.В. МБОУ СОШ 10 Г.БИРОБИДЖАН 5 КЛАСС.
Добро пожаловать на урок математики! учебный год МБОУ «ООШ 1» г.Старый Оскол Учитель математики Конарева Т.Н. Урок алгебры в 7 А классе Тема.
Неравенства. Их свойства. Решение неравенств
Арифметическое действие умножения Тема урока : Действие умножения, знак умножения. Замена выражений на сложение выражениями на умножение и выражений на.
Упрощение выражений «Математику уже затем надо учить, что она ум в порядок приводит М.В.Ломоносов.
Транксрипт:

УРОК МАТЕМАТИКИ В 5-Б КЛАССЕ. ( КОМБИНИРОВАННЫЙ УРОК ) ТЕМА УРОКА: «МАТЕМАТИЧЕСКИЙ ЯЗЫК». ЦЕЛИ УРОКА: ЦЕЛИ УРОКА: ДИДАКТИЧЕСКАЯ: УЧИТЬ УЧАЩИХСЯ ПОЛЬЗОВАТЬСЯ МАТЕМАТИЧЕСКИМ УЧИТЬ УЧАЩИХСЯ ПОЛЬЗОВАТЬСЯ МАТЕМАТИЧЕСКИМ ЯЗЫКОМ, ПЕРЕВОДИТЬ ОБЫЧНЫЙ ЯЗЫК НА МАТЕМАТИЧЕСКИЙ, И ОБРАТНО, ЯЗЫКОМ, ПЕРЕВОДИТЬ ОБЫЧНЫЙ ЯЗЫК НА МАТЕМАТИЧЕСКИЙ, И ОБРАТНО, ФОРМИРОВАТЬ И ОТРАБАТЫВАТЬ МАТЕМАТИЧЕСКУЮ РЕЧЬ, ФОРМИРОВАТЬ И ОТРАБАТЫВАТЬ МАТЕМАТИЧЕСКУЮ РЕЧЬ, СТИМУЛИРОВАТЬ УЧАЩИХСЯ К ОВЛАДЕНИЮ РАЦИОНАЛЬНЫХ ПРИЁМОВ СТИМУЛИРОВАТЬ УЧАЩИХСЯ К ОВЛАДЕНИЮ РАЦИОНАЛЬНЫХ ПРИЁМОВ РЕШЕНИЯ ЗАДАНИЙ; РЕШЕНИЯ ЗАДАНИЙ;РАЗВИВАЮЩАЯ: РАЗВИАТЬ ЛОГИЧЕСКОЕ МЫШЛЕНИЕ УЧАЩИХСЯ, ВЫРАБАТЫВАТЬ УМЕНИЕ РАЗВИАТЬ ЛОГИЧЕСКОЕ МЫШЛЕНИЕ УЧАЩИХСЯ, ВЫРАБАТЫВАТЬ УМЕНИЕ АНАЛИЗИРОВАТЬ И СРАВНИВАТЬ, УЧИТЬ РЕШАТЬ ПРОБЛЕМНЫЕ ЗАДАЧИ, АНАЛИЗИРОВАТЬ И СРАВНИВАТЬ, УЧИТЬ РЕШАТЬ ПРОБЛЕМНЫЕ ЗАДАЧИ, ПРИМЕНЯТЬ ЗНАНИЯ В ЖИЗНИ; ПРИМЕНЯТЬ ЗНАНИЯ В ЖИЗНИ;ВОСПИТАТЕЛЬНАЯ: ПРИУЧАТЬ К ЭСТЕТИЧЕСКОМУ ОФОРМЛЕНИЮ ЗАПИСИ В ТЕТРАДИ, УМЕНИЮ ПРИУЧАТЬ К ЭСТЕТИЧЕСКОМУ ОФОРМЛЕНИЮ ЗАПИСИ В ТЕТРАДИ, УМЕНИЮ ВЫСЛУШИВАТЬ ДРУГИХ И УМЕНИЮ ОБЩАТЬСЯ, ПРИВИВАТЬ АККУРАТНОСТЬ ВЫСЛУШИВАТЬ ДРУГИХ И УМЕНИЮ ОБЩАТЬСЯ, ПРИВИВАТЬ АККУРАТНОСТЬ И ТРУДОЛЮБИЕ. И ТРУДОЛЮБИЕ.

ЭТАПЫ УРОКА: - ОРГАНИЗАЦИОННЫЙ ; - ПОСТАНОВКА ЦЕЛИ; - КОНТРОЛЬ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ УЧАЩИХСЯ; - ВВЕДЕНИЕ НОВЫХ ЗНАНИЙ; - ОБОБЩЕНИЕ, ЗАКРЕПЛЕНИЕ, СОВЕРШЕНСТВОВАНИЕ ЗНАНИЙ; - ФОРМИРОВАНИЕ УМЕНИЙ И НАВЫКОВ; - ПОДВЕДЕНИЕ ИТОГОВ; - ДОМАШНЕЕ ЗАДАНИЕ И ЕГО ИНСТРУКТАЖ.

Что же такое математический язык? Математический язык – это особый язык, на котором говорят и пишут при помощи своего особого алфавита. Каждый человек в своей жизни изучает математический язык и пользуется им не только во время учёбы в школе, но и после школы, работая по любой специальности. Математический язык – это особый язык, на котором говорят и пишут при помощи своего особого алфавита. Каждый человек в своей жизни изучает математический язык и пользуется им не только во время учёбы в школе, но и после школы, работая по любой специальности. Чем бы в жизни мы не занимались, без знания математики и математического языка не обойтись. Чем бы в жизни мы не занимались, без знания математики и математического языка не обойтись. Мы уже знакомы с такими понятиями, как «числовое выражение» и «буквенное выражение». Составляя эти выражения, мы записываем «слова» на математическом языке. А когда мы связываем эти выражения знаками Мы уже знакомы с такими понятиями, как «числовое выражение» и «буквенное выражение». Составляя эти выражения, мы записываем «слова» на математическом языке. А когда мы связываем эти выражения знаками =,, то получаются «предложения».Очень важно уметь читать эти слова и предложения, т.е. «переводить» математические записи на обычный язык и наоборот. =,, то получаются «предложения».Очень важно уметь читать эти слова и предложения, т.е. «переводить» математические записи на обычный язык и наоборот.

Третий и четвёртый этапы урока объединены в один, где контроль знаний и введение нового материала проводятся в форме беседы, в которую вовлекаются все учащиеся. В ходе беседы повторяются и записываются на доске формулы, связанные с движением (пути, скорости, времени),формулы, связанные с геометрическими фигурами (площади и периметра прямоугольника), а так же математические законы сложения и умножения. В ходе беседы повторяются и записываются на доске формулы, связанные с движением (пути, скорости, времени),формулы, связанные с геометрическими фигурами (площади и периметра прямоугольника), а так же математические законы сложения и умножения. Далее, учащиеся самостоятельно составляют таблицу, состоящую из трёх столбцов, в которой записывают: название формулы, формулу и формулировку (по одной формуле из каждого раздела). Например: Далее, учащиеся самостоятельно составляют таблицу, состоящую из трёх столбцов, в которой записывают: название формулы, формулу и формулировку (по одной формуле из каждого раздела). Например: Название формулы или математического закона Запись на математическом языке Запись на обычном языке Формула вычисления пути s = v t s = v t Для вычисления пути надо скорость умножить на время Формула вычисления площади прямоугольника s = a b s = a b Для вычисления площади прямоугольника надо его длину умножить на ширину Переместительный закон сложения a + b = b + a a + b = b + a От перестановки слагаемых, значение суммы не изменится

Обобщение, закрепление, совершенствование знаний. Работа с учебником, решение заданий 264, 265, 267. Работа в группах, каждая группа выполняет одно задание, в котором надо решение записать на математическом языке. Например: Цена одной хризантемы – a р., Цена одной хризантемы – a р., цена одной розы – на 30 р. больше. цена одной розы – на 30 р. больше. Запишите на математическом языке: Запишите на математическом языке: а) цену розы; а) цену розы; б) стоимость пяти хризантем; б) стоимость пяти хризантем; в) стоимость трёх роз; в) стоимость трёх роз; г) стоимость букета из пяти хризантем и трёх роз. г) стоимость букета из пяти хризантем и трёх роз. Решение. Решение. а) (а + 30) р. – цена розы; а) (а + 30) р. – цена розы; б) (5а) р. – стоимость пяти хризантем; б) (5а) р. – стоимость пяти хризантем; в) 3(а + 30) = (3а + 90) (р.) – стоимость трёх роз; в) 3(а + 30) = (3а + 90) (р.) – стоимость трёх роз; г) 5а + 3а + 90 = 8а + 90 (р.) – стоимость букета из пяти хризантем г) 5а + 3а + 90 = 8а + 90 (р.) – стоимость букета из пяти хризантем и трёх роз. и трёх роз.

Устная работа. Работа с учебником. Формирование и отработка математической речи Переведите на обычный язык: 261. Переведите на обычный язык: 1) (a + b)5 = 15; (произведение суммы чисел a и b и числа 5 равно пятнадцати); (произведение суммы чисел a и b и числа 5 равно пятнадцати); 2) 10 : (a - b) > 2; (частное числа 10 и разности чисел a и b больше двух); (частное числа 10 и разности чисел a и b больше двух); 3) 5 + ab < 7; (сумма числа 5 и произведения чисел a и b меньше семи); (сумма числа 5 и произведения чисел a и b меньше семи); 4) 3a – b = 9; (разность утроенного числа a и числа b равна девяти). (разность утроенного числа a и числа b равна девяти).

Формирование умений и навыков. Самостоятельная работа в двух вариантах. Вариант – 1 Вариант – 1 1. Перевести на обычный язык 1. Перевести на обычный язык следующие записи: следующие записи: а) 25( x + y ); б) 2m : 75; в) 2a + 3b кг яблок стоит – х р., 2. 1 кг яблок стоит – х р., 1 кг груш стоит – у р. 1 кг груш стоит – у р. Запишите на математическом языке: Запишите на математическом языке: а) на сколько дороже стоят 5 кг яблок, чем 2 кг груш; чем 2 кг груш; б) за 2 кг яблок и 3 кг груш заплатили 180 р. 180 р. Вариант – 2 Вариант – 2 1. Перевести на обычный язык 1. Перевести на обычный язык следующие записи: следующие записи: а) ( x - y )15; б) 65 : 3n; в) 3b - 2a кг яблок стоит – х р., 2. 1 кг яблок стоит – х р., 1 кг груш стоит – у р. 1 кг груш стоит – у р. Запишите на математическом языке: Запишите на математическом языке: а) на сколько дороже стоят 4 кг груш, чем 2 кг яблок; чем 2 кг яблок; б) за 3 кг яблок и 2 кг груш заплатили 210 р. 210 р.

Подведение итогов урока, домашнее задание: 1. Повторить формулы, рассмотренные на уроке 1. Повторить формулы, рассмотренные на уроке на двух языках: обычном и математическом. на двух языках: обычном и математическом. 2. Выполнить контрольные задания на стр Выполнить контрольные задания на стр Решить вычислительные примеры 270 (а,б). 3. Решить вычислительные примеры 270 (а,б). 4. Подготовиться к устному счёту: 4. Подготовиться к устному счёту: повторить таблицу умножения. повторить таблицу умножения.