Выполнила: студентка группы 21303 Потарина Жанн а 1.

Презентация:



Advertisements
Похожие презентации
Описание, основные характеристики и принцип работы.
Advertisements

ДИОДЫ ГАННА Составили : Артюгин А. В. Суриков Д. А.
Работу выполнили: Красяков Антон Тидякин Юрий Группа
Устройство диодов Ганна Площадь торцов кристалла S = 100 x 100 мкм^2, длина d = 5 – 100мкм. На торцы кристалла нанесены металлические контакты.
Презентация по теме: «Полупроводниковые диоды» Выполнили: Бармин Р.А. Гельзин И.Е.
Виды пробоев в Электронно- дырочном переходе. Электронно-дырочный переход Граница между двумя соседними областями полупроводника, одна из которых обладает.
Выполнили: Миков А.Г., Пронин Е.Х. Руководитель: Гуртов В.А. Полевые Транзисторы 01 Старт !
Полупроводниковыми или электропреобразовательными называются приборы, действие которых основано на использовании свойств полупроводников. K полупроводникам.
Диоды на основе p-n перехода Полупроводниковым диодом называют нелинейный электронный прибор с двумя выводами. Существуют следующие типы полупроводниковых.
Электрофизические свойства проводниковых материалов Автор Останин Б.П. Эл. физ. свойства проводниковых материалов. Слайд 1. Всего 12 Конец слайда.
Характеристики идеального диода на основе p-n перехода. Полупроводниковый диод Нелинейный электронный прибор с двумя выводами. В зависимости от внутренней.
ПОДГОТОВИЛИ СТУДЕНТЫ 3 КУРСА Крупянский Юрий и Товпенец Никита.
Фотодиод Выполнила: студентка группы Степанова К.В.
Полупроводниковые устройства Лекция 15 Весна 2012 г.
Компьютерная электроника Лекция 8. Устройство биполярного транзистора.
Лекция 12 Емкостные преобразователи Емкостный преобразователь представляет собой конденсатор, электрические параметры которого изменяются под действием.
Полевые транзисторы Мытарев А.В. Мытарев А.В. Яковлева Д.А. гр
Выполнили студенты группы Филин П.Н. Силантьев А.А. Сорокин А.Б.
Электрический ток в вакууме. Электронная эмиссия. Двухэлектродная лампа - диод. В металлах есть электроны проводимости. Средняя скорость движения этих.
Лекция 6. Кинетические явления в полупроводниках Применимость зонной теории в слабых электрических полях. Приближение эффективной массы. Блоховские колебания.
Транксрипт:

Выполнила: студентка группы Потарина Жанн а 1

2

Диод Ганна-полупроводниковый диод, состоящий из однородного полупроводника, генерирующий СВЧ-колебания при приложении постоянного электрического поля. Физической основой, позволяющей реализовать такие свойства в диоде, является эффект Ганна, который заключается в генерации высокочастотных колебаний электрического тока в однородном полупроводнике с N-образной вольт-амперной характеристикой. Эффект Ганна обнаружен американским физиком Дж. Ганном в 1963 г. В кристалле арсенида галлия (GaAs) с электронной проводимостью. Ганн выявил, что при приложении электрического поля Е к однородным образцам из арсенида галлия n-типа в образце возникают спонтанные колебания тока. Позднее он установил, что при Е>Е пор в образце, обычно у катода, возникает небольшой участок сильного поля –домен, дрейфующий от катода к аноду со скоростью~ 10 7 см/с и исчезающий на аноде. Затем у катода формируется новый домен, и процесс периодически повторяется. Моменту возникновения домена соответствует падение тока, текущего через образец. Моменту исчезновения домена у анода- восстановление прежней величины тока. Период колебаний тока приблизительно равен пролетному времени, т. е. времени, за которое домен дрейфует от катода к аноду. Особенность диодов Ганна в том, что они основаны на явлениях, возникающих в объеме однородного полупроводника. 3

Устройство Диода Ганна. 1 – катодный вывод; 2 – катодные токоподводящие проволочки, припаянные к омическому контакту кристалла 3 – кристалл однородного полупроводника GaAs,предст авляющий по форме таблетку 4 – керамический патрон; 5 – анодный стержень, к которому припаяна таблетка кристалла, выполняет роль теплоотвода. ДГ не содержит p-n-переходов. 4

Эффект Ганна наблюдается главным образом в двухдолинных полупроводниках, зона проводимости которых состоит из одной нижней долины и нескольких верхних долин.Для того, чтобы при переходе электронов между долинами, возникало отрицательное дифференциальное сопротивление, должны выполняться следующие требования: 1)средняя тепловая энергия электронов должна быть значительно меньше энергетического зазора между побочной и нижней долинами зоны проводимости, чтобы при отсутствии приложенного внешнего электрического поля большая часть электронов находилась в нижней долине зоны проводимости; 2)эффективные массы и подвижности электронов в нижней и верхних долинах должны быть различны. Электроны нижней долины должны иметь высокую подвижность μ 1, малую эффективную массу m 1 * и низкую плотность состояний. В верхних побочных долинах электроны должны иметь низкую подвижность μ 2, большую эффективную массу m 2 * и высокую плотность состояний ; 3) энергетический зазор между долинами должен быть меньше, чем ширина запрещенной зоны полупроводника, чтобы лавинный пробой не наступал до перехода электронов в верхние долины. 5

Из изученных и применяемых полупроводниковых материалов перечисленным требованиям наиболее соответствует арсенид галлия n-типа. Рассмотрим междолинный переход электронов в арсениде галлия. Если напряжённость поля в образце мала, то все электроны находятся в нижней долине зоны проводимости (в центре зоны Бриллюэна). Поскольку средняя тепловая энергия электронов значительно меньше энергетического зазора между дном верхней и нижней долин, они не переходят в верхнюю долину. 6 Схематическая диаграмма, показывающая энергию электрона в зависимости от волнового числа в области минимумов зоны проводимости арсенида галлия n-типа.

Электроны нижней долины имеют малую эффективную массу m 1 * и высокую подвижность μ 1. Плотность тока, протекающего через образец, определяется концентрацией электронов в нижней долине n 1 (n 1 = n 0, где n 0 - равновесная концентрация электронов в полупроводнике): С ростом электрического поля возрастает скорость дрейфа электронов. На длине свободного пробега l электроны приобретают энергию eEl, отдавая при столкновениях с фононами кристаллической решётки меньшую энергию. Когда напряжённость поля достигает порогового значения E П, появляются электроны, способные переходить в верхнюю долину зоны проводимости. Дальнейшее увеличение поля приводит к росту концентрации электронов в верхней долине. Переход из нижней долины в верхнюю сопровождается значительным ростом эффективной массы и уменьшением подвижности, что ведёт к уменьшению скорости дрейфа. При этом на вольт-амперной характеристике образца появляется участок с отрицательным дифференциальным сопротивлением (ОДС). 7 N-образная вольт-амперная характеристика: E - электрическое поле, создаваемое приложенной разностью потенциалов; J - плотность тока.

Для возникновения отрицательного дифференциального сопротивления необходим одновременный переход большинства электронов из центральной долины в боковую при пороговой напряженности электрического поля. Но получить статическую ВАХ, соответствующую сплошной кривой, не удается, так как в кристалле или около невыпрямляющих контактов всегда есть неоднородности, в результате чего возникают локальные напряженности электрического поля, превышающие среднюю напряженность. Превращение в этих местах "легких" электронов в "тяжелые" еще больше увеличивает неоднородность электрического поля. Поэтому практически не получается одновременного перехода большинства электронов в кристалле из центральной долины в боковую и статическая ВАХ остается без участка с ОДС. 8 Распределение электронов при различных значениях напряженности поля

ВАХ диода Ганна. В области дипольного объемного заряда напряженность электрического поля возрастет и станет больше порогового значения, а в остальной части образца E слегка уменьшится и станет меньше E П, т.к. напряжение, подаваемое на образец, поддерживается постоянным. В результате этого дрейфовая скорость электронов и плотность тока в области существования объемного заряда уменьшатся, а в остальной части образца изменятся незначительно. Это приведет к дальнейшему увеличению концентрации электронов в левой части объемного заряда (за счет их подтока от катода) и концентрации нескомпенсированных доноров в правой части за счет ухода быстрых электронов от правой границы к аноду. Этот процесс прекратится, и дипольный слой достигнет стабильной конфигурации, когда плотность тока внутри и вне его станет одинаковой и будет соответствовать точкам вольт- амперной характеристики, лежащим вне участка отрицательной дифференциальной проводимости (например, точки E В и E Д ). 9 Спад силы тока в цепи при формировании домена сильного поля обусловлен резким уменьшением подвижности электронов в нем и, следовательно, увеличением сопротивления образца. Наиболее стабильное состояние домена соответствует минимальной мощности, потребляемой образцом от источника питания, т.е. когда плотность тока в образце имеет наименьшее возможное значение – J min. Тогда максимальная напряженность поля внутри домена сильного поля будет равняться E Д, а вне его – E В.

Генерация СВЧ-колебаний в диодах Ганна. Как любой генератор СВЧ-диапазона, генератор Ганна характеризуется генерируемой мощностью, длиной волны или частотой генерируемых колебаний, коэффициентом полезного действия, уровнем шумов и другими параметрами. Выходная непрерывная мощность генераторов Ганна в пролётном режиме обычно составляет десятки – сотни милливатт, а при импульсной работе достигает сотен ватт. Рабочая частота в пролётном режиме обратно пропорциональна длине или толщине высокоомной части кристалла (f = v/l). Связь между генерируемой мощностью и частотой можно представить в виде: Мощность генерируемых СВЧ-колебаний зависит от полного сопротивления z или от площади рабочей части высокоомного слоя полупроводника. Приведённое соотношение указывает на то, что ожидаемое изменение мощности с частотой пропорционально 1/f Верхний предел рабочей частоты диодов Ганна составляет примерно 150 ГГц. Генераторы Ганна из арсенида галлия могут генерировать СВЧ- колебания от 1 до 50 ГГц. Несколько большие частоты получены на генераторах Ганна из фосфида индия в связи с большими значениями максимальных скоростей электронов, но качество приборов из этого материала значительно ниже из-за недостаточной отработки технологии изготовления материала. Преимущество фосфида индия перед арсенидом галлия - большее значение пороговой напряжённости электрического поля (10,5 и 3,2 кВ/см соответственно). Это должно позволить создать генератор Ганна с большей выходной мощностью. Для создания больших частот генерируемых колебаний представляют интерес тройные соединения GaInSb, т.к. в них велики дрейфовые скорости электронов.

Примеры характеристик диодов Ганна. 11

12 Эффект Ганна наблюдается помимо GaAs и InP также в электронных полупроводниках CdTe, ZnS, InSb, InAs и др., а также в Ge с дырочной проводимостью. Коэффициент полезного действия генераторов Ганна может быть различным (от 1 до 30%), так как существенно отличаются технологии изготовления приборов и качество исходного полупроводникового материала. В связи с возможным наличием в кристалле генератора Ганна нескольких неоднородностей зарождение домена может происходить в различные моменты времени на разном расстоянии от анода. Поэтому частота колебаний будет изменяться, т.е. могут возникать частотные шумы. Кроме частотных шумов в генераторах Ганна существуют амплитудные шумы, основной причиной которых являются флуктуации в скоростях движения электронов. Обычно амплитудные шумы в генераторах Ганна малы, так как дрейфовая скорость в сильных электрических полях, существующих в этих приборах, насыщена и слабо изменяется при изменении электрического поля. Важным для практического применения генераторов Ганна является вопрос о возможности их частотной перестройки в достаточно широком диапазоне. Из принципа действия генератора Ганна ясно, что частота его должна слабо зависеть от приложенного напряжения. С увеличением приложенного напряжения несколько возрастает толщина домена, а скорость его движения изменяется незначительно. В результате при изменении напряжения от порогового до пробивного частота колебаний увеличивается всего на десятые доли процента. Срок службы генераторов Ганна относительно мал, что связано с одновременным воздействием на кристалл полупроводника таких факторов, как сильное электрическое поле и перегрев кристалла из-за выделяющейся в нём мощности.

Применение. Область применения диодов Ганна: импульсные усилители, устройства памяти, логические элементы, схемы преобразования аналоговых напряжений в импульсные. Приборы, принцип работы которых основан на эффекте Ганна, имеют широкую перспективу внедрения в телеметрических системах, в радиолокационных устройствах. 13