Формула суммы n первых членов геометрической прогрессии.

Презентация:



Advertisements
Похожие презентации
МОУ «СОШ 4» г.Новочебоксарск. Легенда о шахматной доске или сумма первых n членов геометрической прогрессии Алгебра 9 класс.
Advertisements

(a n ): -17; -20; -23; -26;-29;-32;... (c n ): 1; 5; 25; 100; 400; (x n ): 56; -28; 14; -7; 3,5;... (d n ): -7,4; -3,4; 0,6; 4,6; 8,6; 12,6;...
Числа - ВЕЛИКАНЫ. Работу выполнила Вавилова Оля ученица 3 «а» класса МОУ гимназии г. Слободского.
ЛЕГЕНДА О ШАХМАТНОЙ ДОСКЕ Шахматы - одна из самых древних игр. Она существует уже многие века, и неудивительно, что с нею связаны различные предания, правдивость.
Последовательности 9 класс. Днинедели Названия месяцев месяцев Классы в школе Номерсчёта в банке Дома на улице Последовательности составляют такие элементы.
Геометрическая прогрессия. Математические знания могут применяться умело с пользой лишь в том случае, если они усвоены творчески. А.Н. Колмогоров Дорогой.
Формула суммы n первых членов геометрической прогрессии.
(Алгебра – 9). Шахматы – одна из самых древних игр. Она существует уже многие века и неудивительно, что с нею связаны различные придания, правдивость.
Легенда о шахматной доске Шахматная игра была придумана в Индии, и когда индусский царь Шерам познакомился с нею, он был восхищен её остроумием и разнообразием.
Закончился XX век. Куда стремится человек? Изучен космос и моря, Строенье звёзд и вся Земля. Но математиков зовёт Известный лозунг: Прогрессио – движение.
Тема презентации:. Шахматы одна из самых древних игр. Она существует уже многие века. Чтобы понять ее, не нужно вовсе уметь играть в шахматы - достаточно.
Древнеиндийский царь Шерам пожелал наградить изобретателя шахмат древнеиндийского ученого Сету.
Работу выполнил Ученик 9 Б класса Гаврилов Владислав.
Формула суммы первых n членов арифметической прогрессии Формула суммы первых n членов арифметической прогрессии
Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа 17 города Кисловодска ФОРМУЛА СУММЫ ЧЛЕНОВ КОНЕЧНОЙ ГЕОМЕТРИЧЕСКОЙ.
Презентацию составил Левенсон Семен – учащийся 9 класса Пойковской школы 1 учитель –Новокрещенова В.С.
Презентация к уроку по алгебре (9 класс) по теме: Сумма n-первых членов геометрической прогрессии
АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ. Содержание Организационный момент. Исторические сведения о прогрессиях. Прогрессии в жизни и быту. Тестовые.
Выполнила учитель МОУ «СОШ с. Питерка Питерского района Саратовской области» Чурляева Наталья Сергеевна с. Питерка 2009.
Учитель: Герасимова Ружена Александровна МОУ «Толиковская СОШ», республика Чувашия.
Транксрипт:

Формула суммы n первых членов геометрической прогрессии

Математические знания могут применяться умело с пользой лишь в том случае, если они усвоены творчески. А.Н. Колмогоров Дорогой друг! Сегодня у тебя необычный урок математики. Сегодня ты еще раз убедишься в том, что математика не только интересна сама по себе, но она необычайно полезна. В ходе сегодняшнего урока тебя ожидает большая радость творчества и огромное поле приложения математических знаний и умений. Желаю тебе успехов и творческих радостей на уроке!

НАЗАД, В ИСТОРИЮ! На связь между прогрессиями первым обратил внимание великий АРХИМЕД (ок. 287–212 гг. до н.э) Термин прогрессия был введен римским автором Боэцием (в 6 веке) и понимался в более широком смысле, как бесконечная числовая последовательность. Названия арифметическая и геометрическая были перенесены из теории непрерывных пропорций, которыми занимались древние греки. Формула суммы членов арифметической прогрессии была доказана древнегреческим ученым Диофантом (в 3 веке). Формула суммы членов геометрической прогрессии дана в книге Евклида Начала (3 век до н.э.). Правило для нахождения суммы членов произвольной арифметической прогрессии впервые встречается в сочинении «Книги абака» в 1202г. (Леонардо Пизанский ) Понятие числовой последовательности возникло и развивалось задолго до создания учения о функциях.

Англия XVIII век В XVIII в. в английских учебниках появились обозначения арифметической и геометрической прогрессий: Арифметическая Геометрическая

Сведения, связанные с прогрессиями, впервые встречаются в дошедших до нас документах Древней Греции. Уже в V в. до н. э. греки знали следующие прогрессии и их суммы: Древняя Греция

Германия Нашел моментально сумму всех натуральных чисел от 1 до 100, будучи еще учеником начальной школы. КАРЛ ГАУСС (1777 – 1855) … … … Как он это сделал?

Определение: Геометрической прогрессией называют последовательность (первый член которой не равен 0), каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и тоже число. Это число называют знаменателем геометрической прогрессии. Пример геометрической прогрессии: 1, 3, 9, 27, 81, 243,... Это прогрессия со знаменателем 3

Шахматная игра была придумана в Индии, и когда индусский царь Шерам познакомился с нею, он был восхищен ее остроумием и разнообразием возможных в ней положений. Узнав, что она изобретена одним из его подданных, царь приказал его позвать, чтобы лично наградить за удачную выдумку. Изобретатель, его звали Сета, явился к трону повелителя. Это был скромно одетый ученый, получавший средства к жизни от своих учеников.

-Я достаточно богат, чтобы исполнить самое смелое твое пожелание, - продолжал царь. - Назови награду, которая тебя удовлетворит, и ты получишь ее. Сета молчал. -Не робей, - ободрил его царь. – Выскажи свое желание. Я не пожалею ничего, чтобы исполнить его. -Велика доброта твоя, повелитель. Но дай срок обдумать ответ. Завтра я сообщу тебе мою просьбу. -Я желаю достойно вознаградить тебя, Сета, за прекрасную игру, которую ты придумал, -сказал царь. Мудрец поклонился.

Когда на другой день Сета снова явился к ступеням трона, он удивил царя беспримерной скромностью своей просьбы. -Повелитель, - сказал Сета, - прикажи выдать мне за первую клетку шахматной доски одно пшеничное зерно. -Простое пшеничное зерно? – изумился царь. -Да, повелитель. За вторую клетку прикажи выдать 2 зерна, за третью - 4, за четвертую - 8, за пятую - 16, за шестую -32…

-Довольно, - с раздражением прервал его царь. – Ты получишь свои зерна за все 64 клетки доски, согласно твоему желанию: за каждую вдвое больше против предыдущей. Но знай, что просьба твоя недостойна моей щедрости. Прося такую ничтожную награду, ты непочтительно пренебрегаешь моей милостью. Ступай. Слуги мои вынесут тебе твой мешок с пшеницей. Сета улыбнулся хитро, покинул дворец и стал дожидаться у ворот дворца.

Почему так хитро улыбнулся Сета? Прав ли был индусский царь, считая просьбу Сеты ничтожной, полагая, что все зерна пшеницы уместятся в один мешок? Об этом ты узнаешь чуточку позже.

За обедом царь вспомнил об изобретателе шахмат и послал узнать, унес ли Сета свою жалкую награду. -Повелитель, - был ответ, - приказание твое исполняется. Придворные математики исчисляют число следуемых зерен. Царь нахмурился. Он не привык, чтобы повеления его исполнялись так медлительно. Вечером, отходя ко сну, царь еще раз осведомился, давно ли Сета со своим мешком пшеницы покинул ограду дворца. -Повелитель, - ответили ему, - математики твои трудятся без устали и надеются еще до рассвета закончить подсчет.

Утром царю доложили, что старшина придворных математиков просит выслушать важное донесение. Царь приказал ввести его. -Прежде чем скажешь о твоем деле, - объявил Шерам, - я желаю услышать, выдана ли, наконец, Сете та ничтожная награда, которую он себе назначил. -Ради этого я и осмелился явиться перед тобой в столь ранний час, - ответил старик. – Мы добросовестно исчислили все количество зерен, которое желает получить Сета. Число это так велико…..

-Как бы велико оно ни было, - надменно перебил царь, - житницы мои не оскудеют. Награда обещана и должна быть выдана.. - Не в твоей власти, повелитель, исполнять подобные желания. Во всех амбарах твоих нет такого числа зерен, которое потребовал Сета. Нет его и в житницах целого царства. Не найдется такого числа зерен и на всем пространстве Земли. И если желаешь непременно выдать обещанную награду, то прикажи превратить земные царства в пахотные поля, прикажи осушить моря и океаны, прикажи растопить льды и снега, покрывающие далекие северные пустыни.

С изумлением внимал царь словам старца. - Назови мне это чудовищное число,- сказал он в раздумьи. Пусть все пространство их будет сплошь засеяно пшеницей. И все то, что родится на этих полях, прикажи отдать Сете. Тогда он получит свою награду…

-Восемнадцать квинтильонов четыреста сорок шесть квадрильонов семьсот сорок четыре триллиона семьдесят три миллиарда семьсот девять миллионов пятьсот пятьдесят одна тысяча шестьсот пятнадцать, о повелитель!

Такова легенда. Действительно ли было то, что здесь рассказано, неизвестно, - но что награда, о которой говорит предание, должна была выразиться именно таким числом в этом ты сам можешь убедиться. Фактически, число зерен, о которых идет речь, является суммой 64 членов геометрической прогрессии, первый член которой равен 1, а знаменатель равен 2. Обозначим эту сумму через S: S = ……

S = 2 64 – 1 Значит, подсчет зерен сводится к перемножению 64 двоек. Для облегчения выкладок заменим 2 64 = (2 10 ) 6 · 2 4 = =1024 · 1024 ·1024· 1024 ·1024· 1024· 16 = = · · ·16 – 1 и получим искомое число зерен: Масса такого числа зерен больше триллиона тонн. Индусский царь не в состоянии был выдать подобной награды. Но будь он силен в математике, он бы не попал впросак…

Вывод Если бы царю удалось засеять пшеницей площадь всей поверхности Земли, считая моря, и океаны, и горы, и пустыню, и Арктику с Антарктикой, и получить удовлетворительный урожай, то, пожалуй, лет за 5 он смог бы рассчитаться. Такое количество зерен пшеницы можно собрать лишь с площади в 2000 раз большей поверхности Земли. Это превосходит количество пшеницы, собранной человечеством до настоящего времени.

Задачи

Сравни результаты

Ваше настроение

Спасибо!