Параллельное проектирование Блинова Наталья 10-А.

Презентация:



Advertisements
Похожие презентации
Метод параллельного проектирования. Изображение пространственных фигур на плоскости. Геометрия, 10 класс. 10 класс. Воробьев Леонид Альбертович, г.Минск.
Advertisements

Метод параллельного проектирования. Изображение пространственных фигур на плоскости. Геометрия, 10 класс. 10 класс. Воробьев Леонид Альбертович, г.Минск.
Математический диктант: 1.Сколько точек характеризуют прямую? 2.Верно ли, что через любую точку пространства можно провести множество прямых, параллельных.
Презентация к уроку по геометрии (10 класс) по теме: «Проектирование пространственных фигур на плоскость» ( 10 класс)
Изображение пространственных фигур на плоскости Геометрия -10.
Параллельное проектирование Пусть π - некоторая плоскость, l - пересекающая ее прямая. Через произвольную точку A, не принадлежащую прямой l, проведем.
Теорема Если плоская фигура F лежит в плоскости, параллельной плоскости проектирования π, то ее проекция F на эту плоскость будет равна фигуре F.
Изображение пространственных фигур на плоскости Геометрия 10 класс В презентации использованы презентации ресурсов Интернета Благодарим авторов за предоставленный.
ОРТОГОНАЛЬНОЕ ПРОЕКТИРОВАНИЕ Пусть дана плоскость π и точка A пространства. Через точку A проведем прямую a, перпендикулярную плоскости π. Точку пересечения.
Изображение пространственных фигур на плоскости Геометрия -10.
Презентация к уроку по геометрии (10 класс) на тему: Изображение пространственных фигур на плоскости
Методы изображений Практическое занятие 1 План занятия 1. Требования к изображениям в педагогическом процессе 2. Параллельное проектирование и его свойства.
ПРЯМОЙ ЦИЛИНДР Пусть в пространстве заданы две параллельные плоскости и. F – круг в одной из этих плоскостей, например. Рассмотрим ортогональное проектирование.
Урок 4 Ортогональное проектирование. Х параллельная проекция точки Х а задает направление проктирования - плоскость проекций Проекцией фигуры F называется.
Многоугольники Рассмотрим фигуру, составленную из отрезков AB, BC, CD, DE, EF, FA так, что смежные отрезки не лежат на одной прямой, а несмежные отрезки.
УРОК – СОРЕВНОВАНИЕ ПАРАЛЛЕЛЬНОСТЬПЛОСКОСТЕЙ. ПАРАЛЛЕЛЬНОЕ ПРОЕКТИРОВАНИЕ.
Геометрия Виды геометрических фигур и их измерения 1. Треугольник - геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех.
ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости. Теорема.
Четырехугольники Каким одним словом можно назвать эти фигуры? Какое свойство выделяют четырехугольники 2, 3, 4, 6? У этих четырехугольников есть свое.
ЧЕТЫРЁХУГОЛЬНИКИ, ИХ ПРИЗНАКИ И СВОЙСТВА Геометрия 8 класс.
Транксрипт:

Параллельное проектирование Блинова Наталья 10-А

Стереометрия – это геометрия в пространстве. Нам необходимо уметь изображать геометрические фигуры, причем все чертежи мы по-прежнему выполняем на плоскости (на странице тетради, на доске и т.д.). Каким образом пространственную фигуру (например, куб) можно «уложить» в плоскость? Для этого применяется метод параллельного проектирования. Выясним его суть на примере простейшей геометрической фигуры – точки. Итак, у нас есть геометрическая фигура в пространстве – точка А. А

А Выберем в пространстве произвольную плоскость (плоскость проекций) и любую прямую a (она задает направление параллельного проектирования). а

А а Проведем через точку А прямую, параллельную прямой а. А1 Точка А1 пересечения этой прямой с плоскостью и есть проекция точки А на плоскость. Точку А ещё называют прообразом, а точку А1 – образом. Если А, то А1 совпадает с А.

Рассматривая любую геометрическую фигуру как множество точек, можно построить в заданной плоскости проекцию данной фигуры. Таким образом можно получить изображение (или «проекцию») любой плоской или пространственной фигуры на плоскости. а Наглядным примером параллельного проектирования является отбрасываемая любым объектом(прообраз) в пространстве тень(образ) от солнечных лучей(направление параллельного проектирования) на Земле(плоскость проекций).

При параллельном проектировании не выбирают направление параллельного проектирования параллельно плоскости проекции А а

При параллельном проектировании плоских фигур не выбирают направление параллельного проектирования параллельно плоскости, которой принадлежит эта плоская фигура, т.к. получающаяся при этом проекция не отражает свойства данной плоской фигуры. А а B C А1 B1B1 C1C1

Если направление параллельного проектирования перпендикулярно плоскости проекций, то такое параллельное проектирование называется ортогональным(прямоугольным) проектированием. А а B C А1 B1B1 C1C1

Если плоскость проекций и плоскость, в которой лежит данная фигура параллельны ( ||(АВС)), то получающееся при этом изображение равно прообразу. А а B C А1 B1B1 C1C1

Параллельное проектирование обладает свойствами: 1) параллельность прямых (отрезков, лучей) сохраняется; а A D C B A1A1 D1D1 C1C1 B1B1 AB ||CD => A1B1 ||C1D1

2) отношение длин отрезков, лежащих на параллельных или на одной прямой сохраняется; Параллельное проектирование обладает свойствами: 1)параллельность прямых (отрезков, лучей) сохраняется; а A D C B A1 D1 C1 B1 Если, например, АВ=2CD, то А1В1=2C1D1 или М М1М1

Параллельное проектирование обладает свойствами: 1)параллельность прямых (отрезков, лучей) сохраняется; а A B A1 B1 3) Линейные размеры плоских фигур(длины отрезков, величины углов) не сохраняются (исключение ортогональное проектирование). 2) отношение длин отрезков, лежащих на параллельных или на одной прямой сохраняется; β β1β1 C C1

Итак, построим изображение куба: Далее разберем примеры изображения некоторых плоских фигур…

Фигура в пространствеЕё изображение на плоскости Произвольный треугольник Прямоугольный треугольникПроизвольный треугольник Равнобедренный треугольникПроизвольный треугольник

Фигура в пространствеЕё изображение на плоскости Равносторонний треугольникПроизвольный треугольник ПараллелограммПроизвольный параллелограмм ПрямоугольникПроизвольный параллелограмм

Фигура в пространствеЕё изображение на плоскости Квадрат Произвольный параллелограмм ТрапецияПроизвольная трапеция Произвольный параллелограмм Ромб

Фигура в пространствеЕё изображение на плоскости Равнобокая трапецияПроизвольная трапеция Прямоугольная трапеция Произвольная трапеция Круг (окружность) Овал (эллипс)

A BC D EF O Как построить изображение правильного шестиугольника. F A BC D E Разобьем правильный шестиугольник на три части: прямоугольник FBCE и два равнобедренных треугольника ΔFAB и ΔCDE. Построим вначале изображение прямоугольника FBCE – произвольный параллелограмм FBCE. Осталось найти местоположение двух оставшихся вершин – точек A и D. Вспомнив свойства правильного шестиугольника, заметим, что: 1) эти вершины лежат на прямой, проходящей через центр прямоугольника и параллельной сторонам BC и FE; 2) OK=KD и ON=NA. K N Значит, 1) находим на изображении точку О и проводим через неё прямую, параллельную BC и FE, получив при этом точки N и K; O NK 2) откладываем от точек N и K от центра О на прямой такие же отрезки – в итоге получаем две оставшиеся вершины правильного шестиугольника A и D.

A B C DE Как построить изображение правильного пятиугольника. Разобьем фигуру на две части – равнобокую трапецию и равнобедренный треугольник, а затем пользуясь свойствами свойствами этих фигур и,конечно же, свойствами параллельного проектирования строим пятиугольник. A C DE B