Автор: Акимова Марина, 10 класс. Руководитель: Заковряшина Н.М. Почему правильных многогранников только пять?

Презентация:



Advertisements
Похожие презентации
Реферат по геометрии на тему: Автор: Курмышкина Светлана ученица 11 «В» класса, школа 250 Руководитель: Самсонова Мария Николаевна учитель математики.
Advertisements

Реферат по математике на тему: Выполнила: Уч-ся гр.6-10 Шкарина Оксана.
О пределение п равильного м ногогранника Многогранник н азывается п равильным, е сли : о н в ыпуклый, в се е го г рани - р авные п равильные многоугольники,
Правильные фигуры в геометрии Учитель математики Беленкова Ольга Александровна.
Правильные многогранники. Понятие правильного многогранника Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники.
Ховаева Екатерина, 10 класс. Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник называется.
Выполнила: Цуканова Светлана 10«А». Изучить определения и свойства правильных многогранников Выступить с сообщением в классе Получить положительную оценку.
Правильные многогранники Работа учеников 10 б Иванова Николая и Митченко Егора.
ГЕОМЕТРИЧЕСКИЕ ТЕЛА. Классификация ГЕОМЕТРИЧЕСКИЕ ТЕЛА МНОГОГРАННИКИ ТЕЛА ВРАЩЕНИЯ ПРИЗМА ПИРАМИДА ПРАВИЛЬНЫЕ МНОГОГРАННИКИ ЦИЛИНДР КОНУС ШАР.
Геометрия Пирамида. Пирамида - многогранник, основание которого многоугольник, а остальные грани треугольники, имеющие общую вершину. По числу углов основания.
Геометрия Виды геометрических фигур и их измерения 1. Треугольник - геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех.
Правильные многогранники. Цель и задачи: Закрепление изученного материала; Закрепление изученного материала; Увеличение интереса к геометрии; Увеличение.
Классификация многогранников: Правильные многогранники Призмы Пирамиды - тела, состоящие из конечного числа плоских многоугольников.
Содержание: 1)Титульный лист 2)Определение тетраэдра и его свойства 3)Построение тетраэдра 4)Формула объема тетраэдра 5)Определение параллелепипеда его.
Правильные многогранники 1) Симметрия в пространстве. 1) Симметрия в пространстве. 2) Понятие правильного многогранника. 2) Понятие правильного многогранника.
Многогранники, пирамида и призма Бийск 2008 г.. Содержание 1. Что такое многогранник ? Что такое многогранник ? Что такое многогранник ? 2. Виды многогранников.
Пирамида.
Пирамида Пирамидой называется многогранник, который состоит из плоского многоугольника – основания пирамиды, точки, не лежащей в плоскости основания, -
Обирина Людмила Ивановна Преподаватель КГБОУ СПО « НПК » Геометрические фигуры в пространстве Норильск, 2015.
ТЕТРАЭДР Тетраэдр – представитель правильных выпуклых многогранников. Поверхность тетраэдра состоит из четырех равносторонних треугольников, сходящихся.
Транксрипт:

Автор: Акимова Марина, 10 класс. Руководитель: Заковряшина Н.М. Почему правильных многогранников только пять?

Ход работы Математика есть орудие познания и изменение природы человеком. Мы воспользовались данным орудием и провели свое небольшое исследование в области «Многогранников». Убедившись в том, что информация в школьном учебнике по данной теме очень скудна, мы поставили перед собой цель: глубже изучить различные виды многогранников и ознакомить с ними учащихся нашего класса. Гипотеза: мы считаем, что, изучив данную тему, сможем расширить кругозор в этой области и донести полученную информацию до ребят.

Задачи 1) проработать литературу; 2) изучить различные виды многогранников; 3)Посмотреть сечения многогранников плоскостью; 4) интересно подготовить данный материал для проведения урока.

Составлен из четырёх равносторонних треугольников. Каждая его вершина является вершиной трёх треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180º.

Октаэдр Составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырёх треугольников. Следовательно, сумма плоских углов при каждой вершине 240º.

Составлен из шести квадратов. Каждая вершина куба является вершиной трёх квадратов. Следовательно, сумма плоских углов при каждой вершине равна 270º.

Составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324º.

Пирамидой называется многогранник, который состоит из плоского многоугольника, – основания пирамиды, точки, не лежащей в плоскости основания, – вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками основания. Поверхность пирамиды состоит из основания и боковых граней. Каждая боковая грань – треугольник. Одной из его вершин является вершина пирамиды, а противолежащей стороной – сторона основания пирамиды. Высотой пирамиды называется перпендикуляр, опущенный из вершины пирамиды на плоскость основания. A C D S B E F A C D S B SDB – диагональное сечение пирамиды SABCD. O S C D В А ABCD – основание SO – высота

Тетраэдр является ортоцентрическим тогда и только тогда, когда его противоположные ребра перпендикулярны; или середины всех шести ребер лежат на одной сфере; или все ребра описанного параллелепипеда равны. Слово «тетраэдр» оразовано из двух греческих слов: tetra – «четыре» и hedra – «основание, грань». Тетраэдр задается четырьмя вершинами; грани тетраэдра – четыре треугольника. В качестве основания может быть выбрана любая его грань.

Тетраэдр, в вершине которого сходятся три взаимно перпендикулярных ребра, называется прямоугольным. Точка М и будет ортоцентром. М S S1S1 S2S2 S3S3 S² = S 1 ²+ S 2 ²+ S 3 ²

1. описанный параллелепипед равногранного тетраэдра – прямоугольный ; 2. у него имеется три оси симметрии (это общие перпендикуляры, проведенные к противоположным ребрам, они же бимедианы. 3. развертка тетраэдра, полученная при разрезании его по трем сходящимся в одной вершине ребрам; 4. все трехгранные углы равны; 5. все медианы равны; 6. все высоты равны; 7. центры вписанной и описанной сфер и центроид совпадают; 8. радиусы описанных окружностей граней равны; 9. периметры граней равны; 10. площади граней равны

Выводы Познакомились с видами многогранников; Повторили свойства многогранников.