ТЕОРЕМА: В любой треугольник можно вписать окружность. A B C O
ТЕОРЕМА: Около любого треугольника можно описать окружность. C A B O A B C O Доказательство.
ТЕОРЕМА ОБ ОКРУЖНОСТИ, ОПИСАННОЙ ОКОЛО МНОГОУГОЛЬНИКА: Около любого правильного многоугольника можно описать окружность, и притом только одну. ТЕОРЕМА ОБ ОРУЖНОСТИ, ВПИСАННОЙ В ПРАВИЛЬНЫЙ МНОГОУГОЛЬНИК: В любой правильный многоугольник можно вписать окружность, и притом только одну.
, SPa4a4 rRN Вычисление площади правильного многоугольника, его стороны и радиуса вписанной окружности и радиуса вписанной окружности
Зависимость стороны, радиуса описанной окружности, радиуса вписанной окружности для всех наиболее часто встречающихся правильных многоугольников R6 2R22R2 4 3 Srа Количество сторон n
Площади правильных многоугольников Площади правильных многоугольников НАЗВАНИЯ И ПЛОЩАДИ МНОГОУГОЛЬНИКОВ Число сторон Название многоугольникаПлощадь правильного многоугольника 3Треугольник0,433a 2 4Четырехугольник1,000a 2 5Пятиугольник1,720a 2 6Шестиугольник2,598a 2 7Семиугольник3,634a 2 8Восьмиугольник4,828a 2 9Девятиугольник6,182a 2 10Десятиугольник7,694a 2 nn-угольник
Задача 1. Построение правильного треугольника.
Задача 2. Построение правильного Построение правильного четырехугольника (квадрата)
Задача 3. Построение правильного, шестиугольника сторона которого равна данному отрезку
Задача 4. Дан правильный n – угольник. Построить правильный 2n – угольник
Задача 4. Дан правильный n – угольник. Построить правильный 2n – угольник
На сколько равных частей На сколько равных частей можно делить окружность с помощью циркуля и линейки?
0 вписанных углах. Гиппократ Хиосский Изложенное в современных учебниках доказательство того, что вписанный угол измеряется половиной дуги, на которую он опирается, дано в «Началах» Евклида. На это предложение ссылается, однако, еще Гиппократ Хиосский (V в. до н. э.) в своем труде о «луночках». Труды Гиппократа свидетельствуют о том, что уже во второй половине V в. до н. э. было известно большое число теорем, изложенных в «Началах» Евклида, и геометрия достигла высокого развития. Тот факт, что опирающийся на диаметр вписанный уголпрямой, был известен вавилонянам еще 4000 лет назад. Первое его доказательство приписывается Памфилией, римской писательницей времен Нерона, Фалесу Милетскому.
0 правильных многоугольниках В египетских и вавилонских старинных памятниках встречаются правильные четырехугольники, шестиугольники и восьмиугольники в виде изображений на стенах и украшений, высеченных из камня. Древнегреческие ученые стали проявлять большой интерес к правильным фигурам еще со времен Пифагора. Деление окружности на некоторое число равных частей для построения правильных многоугольников имело важное значение для пифагорейцев, которые утверждали, что числа лежат в основе всех явлений мира. Учение о правильных многоугольниках, начатое в школе Пифагора, продолженное и развитое в VIV вв. до н. э., было систематизировано Евклидом и изложено в IV книге «Начал». Кроме построения правильного треугольника, четырехугольника, пятиугольника и шестиугольника, Евклид решает и задачу построения правильного пятнадцатиугольника при помощи только циркуля и линейки. Эта фигура привлекала внимание древних, так как было замечено, что дуга угла наклонения эклиптики к экватору представляет собой всей окружности, т. е. стягивается стороной правильного пятнадцатиугольника.
– это последовательность высказывания, рассуждений, построений, содержащая скрытую ошибку, за счет чего удается сделать неверный вывод. Задача обычно заключается в том, чтобы найти ошибку в рассуждениях.
b a A B C Окружность имеет два центра M N O1 O2
Сечение головки газового вентиля имеет форму правильного треугольника, сторона которого равна 3см. Каким должен быть минимальный диаметр круглого железного стержня, из которого изготовляют вентиль?
Решение A B C D = 2R,.
Около окружности описаны квадрат и правильный шестиугольник. Найти периметр квадрата, если периметр шестиугольника равен 48 см?
Решение M NK L O A B CD E F 1) 1)а 6 = P 6 : 6 = 48 : 6 = 8 (см), r 6 = == 4, т.к. R = а 6. 2)Для квадрата: r = где R – радиус описанной около квадрата окружности, r – радиус вписанной в него окружности. a 4 = 3) Ответ: Р 4 = 32
Каким необходимым и достаточным условием должна удовлетворять трапеция, чтобы в нее можно было вписать и около нее можно было описать окружность?
A B C O1 O2 O1 – центр описанной окружности, О2 – центр вписанной окружности Необходимость: Достаточность: D AB + CD = BC + AD и, значит, AB = CD = BAD = ADC, но BAD + АВС = 180 Отсюда ADC + АВС = 180, и вокруг трапеции ABCD можно описать окружность Кроме того, AB + CD = BC + AD и, следовательно, в ABCD можно вписать окружность. Необходимо и достаточно, чтобы трапеция была равносторонней и боковая сторона равнялась полусумме оснований.