В геометрии выделяют задачи на построение, которые можно решить только с помощью двух инструментов: циркуля и линейки без масштабных делений. Линейка позволяет провести произвольную прямую, а также построить прямую, проходящую через две данные точки; с помощью циркуля можно провести окружность произвольного радиуса, а также окружность с центром в данной точке и радиусом, равным данному отрезку. I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I
А В С Построение угла, равного данному. Дано: угол А. О D E
биссектриса Построение биссектрисы угла.
Q P В А М Докажем, что а РМ М a Построение перпендикулярных прямых.
a N М Построение перпендикулярных прямых. М a
Q P В А О Построение середины отрезка
D С Построение треугольника по двум сторонам и углу между ними. Угол hk h 1.Построим луч а. 2.Отложим отрезок АВ, равный P 1 Q 1. 3.Построим угол, равный данному. 4.Отложим отрезок АС, равный P 2 Q 2. В А Треугольник АВС искомый. Обоснуй, используя I признак. Дано: Отрезки Р 1 Q 1 и Р 2 Q 2 Q1Q1 P1P1 P2P2 Q2Q2 а k
D С Построение треугольника по стороне и двум прилежащим к ней углам. Угол h 1 k 1 h2h2 1.Построим луч а. 2.Отложим отрезок АВ, равный P 1 Q 1. 3.Построим угол, равный данному h 1 k 1. 4.Построим угол, равный h 2 k 2. В А Треугольник АВС искомый. Обоснуй, используя II признак. Дано: Отрезок Р 1 Q 1 Q1Q1 P1P1 а k2k2 h1h1 k1k1 N
С 1.Построим луч а. 2.Отложим отрезок АВ, равный P 1 Q 1. 3.Построим дугу с центром в т. А и радиусом Р 2 Q 2. 4.Построим дугу с центром в т.В и радиусом P 3 Q 3. В А Треугольник АВС искомый. Обоснуй, используя III признак. Дано: отрезки Р 1 Q 1, Р 2 Q 2, P 3 Q 3. Q1Q1 P1P1 P3P3 Q2Q2 а P2P2 Q3Q3 Построение треугольника по трем сторонам.