Правила комбинаторики Основные понятия. КОМБИНАТОРИКОЙ называется раздел математики, в котором исследуется, сколько различных комбинаций (всевозможных.

Презентация:



Advertisements
Похожие презентации
Правила комбинаторики Основные понятия алгебра 9 класс Выполнила Гуляева Е.В. учитель математики МОУ ПСШ.
Advertisements

ТЕМА УРОКА: «ЭЛЕМЕНТЫ КОМБИНАТОРИКИ» (ПРАКТИКУМ) Цели: Повторить основные понятия комбинаторикиосновные понятия Сформировать умения решать различные виды.
Комбинаторика - раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить.
УРОК 4. Элементы комбинаторики.. Задачи на непосредственный подсчет вероятностей Комбинаторика изучает количество комбинаций (подчиненное определенным.
К ОМБИНАТОРИКА. Решение задач. Орлова Л.В., Малышкина С.Ю.
Тема урока: «Размещения» Алгебра 9 класс «Размещения» Лучше в совершенстве выполнить небольшую часть дела, чем сделать плохо в десять раз более. Аристотель.
Определение Область математики, в которой изучают комбинаторные задачи, называется комбинаторикой.
Элементы комбинаторики Размещения. Задача 1. Сколькими способами 9 человек могут встать в очередь в театральную кассу? Решение: P 9 = 9! = 9·8·7·6·5·4·3·2·1.
Элементы комбинаторики. Принцип произведения комбинаций n1n1 n2n2 … nknk … Комбинация элементов n 1 n 2 n k 12 k ШАГИ N = n 1 n 2 … n k.
Автор: к.ф.-м.н., доцент Жанабергенова Г.К.,. 1.Размещение: Это любое упорядоченное подмножество m из элементов множества n. (Порядок расположения элементов.
Комбинаторика. Определение множества Множество есть совокупность объединенных по некоторым признакам различных объектов, называемых элементами множества.
Введение в комбинаторику и теорию вероятностей. 1) КомбинаторикаКомбинаторика 2) ФакториалФакториал 3) ПерестановкиПерестановки 4) РазмещенияРазмещения.
Элементы комбинаторики. 1.ЧЧто изучает комбинаторика. 2.ППерестановки: a)ЧЧисло перестановок. b)ППример. 3.РРазмещения: a)ЧЧисло размещений. b)ППример.
КОМБИНАТОРИКА Выполнила: ученица 11 класса МОШ I-III ступеней 2 Посадская Татьяна Учитель: Богомолова И.В.
Сколькими способами можно распределить уроки в шести классах между тремя учителями, если каждый учитель будет преподавать в двух классах?
{ определение – правила равенства, суммы и произведения – принцип включений – исключений – обобщение правила произведения – общее правило произведения.
Комбинаторика Лейбниц, 1666 год «Рассуждения о комбинаторном искусстве»
Голодникова Алевтина Александровна – преподаватель математики ГБ ПОУ «Экономический колледж» г.Санкт-Петербурга.
Комбинато́рика Комбинато́рика (Комбинаторный анализ) раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения и.
Определение вероятности случайного события. Элементы комбинаторики: Перестановки; Размещения; Сочетания.
Транксрипт:

Правила комбинаторики Основные понятия

КОМБИНАТОРИКОЙ называется раздел математики, в котором исследуется, сколько различных комбинаций (всевозможных объединений элементов), подчиненных тем или иным условиям, можно составить из элементов, принадлежащих данному множеству

Правило суммы Если надо выбрать n вещей, причём одну выбрать m способами, а вторую k способами, то или одну или другую вещь можно выбрать (m + k) способами. Имеется 8 шаров: в 1 ящик положили 5 шт., а 2- 3 шт.Сколькими способами можно вытащить 1 шар? Решение: из 1 ящика шар можно вытащить 5-ю способами, а из второго 3-мя. Значит, всего 5+3=8 способов

Правило произведения Если надо выбрать n вещей, причём одну выбрать m способами, а вторую k способами, то одну и другую можно выбрать (mхk) способами. В 1 ящике 5 зелёных, а 2- 3 красных шара. Сколькими способами можно вытащить 1 зелёный и 1 красный шар? Решение: зелёный можно выбрать 5-ю способами, а красный – 3-мя. Значит, 1 зелёный и 1 красный можно выбрать 3х5 = 15 способами.

Виды комбинаций (выборок) Если из данного множества предметов мы будем выбирать некоторое подмножество, то его будем называть выборкой. Размещениями без повторений из n элементов по m называются такие выборки, которые содержат по m элементов, взятых из числа данных n элементов, и отличаются друг от друга либо составом элементов, либо порядком их расположения. Число размещений из n по m обозначается A n m = n!/ ( n – m )!, где n! = ….n,( n!- эн факториал) произведение n -последовательных натуральных чисел

Рассмотрение примеров В звене 12 человек. Требуется выбрать звеньевого, санитара, командира. Сколькими способами это можно сделать? Решение: сначала выбирают звеньевого, затем санитара, и наконец командира. Каждый может быть выбран звеньевым, поэтому существует 12 возможностей, для выбора санитара остаётся 11 возможностей, а выбор командира уже 10 способов. Следовательно, всего получается 12х11х10 =1320 способов, что бы выбрать трёх учеников из 12 т.е. A 12 3 = 12х11х10 = 1320

Перестановками без повторений из n элементов по n называются размещения, отличающиеся друг от друга только порядком расположения элементов. Число перестановок обозначается P n = n! Сколько четырёхзначных чисел можно записать с помощью цифр 1,2,3,4, если каждая цифра входит в число только один раз? Решение: P n = 4! = 1*2*3*4 = 24

Размещения без повторений из n элементов по m, которые отличаются друг от друга хотя бы одним элементом, называются сочетаниями C m n = (A n m )/P m

Рассмотрение примеров На тренировке занимаются 10 баскетболистов. Сколько различных стартовых пятёрок может образовать тренер? Решение: так как при составлении стартовой пятёрки тренера интересует только состав пятёрки, то достаточно определить число сочетаний из 10 элементов по 5: С 10 5 = ( 10х9х8х7х6)/(1х2х3х4х5) = 252

Различие между перестановками, размещениями, сочетаниями В случае перестановок берутся все элементы и изменяется только их местоположение. В случае размещений берётся только часть элементов и важно расположение элементов друг относительно друга. В случае сочетаний берётся только часть элементов и не имеет значения расположение элементов друг относительно друга.

Проверь себя Что такое комбинаторика? В чём состоит правило суммы? В чём состоит правило произведения? Что такое размещения? Запишите формулу для нахождения числа размещений. Что такое перестановки? Запишите формулу для нахождения числа перестановок. Что такое факториал? Что такое сочетания? Запишите формулу для нахождения числа сочетаний. В чём различие между перестановками, размещениями, сочетаниями?

Задачи на дом В спортивном лагере 8 команд, а на складе имеются синие, чёрные майки и трусы. Хватит ли на 8 команд комплектов спортивной формы? В тренировках участвовали 12 баскетболистов. Сколько может образовать тренер различных стартовых пятёрок? Сколькими способами можно зачеркнуть 5 номеров из 36 в карточках лотереи «Спортлото»?

Для продвинутых На горку ведут 5 дорожек. Сколько имеется вариантов подъёма и спуска по этим дорожкам? В кружке юных математиков 25 членов. Сколькими способами можно выбрать председателя кружка, заместителя, редактора стенгазеты и секретаря? В городе проводится первенство по футболу. Сколько в нём состоится матчей, если участвуют 12 команд?