Педагогический проект: Учебно-исследовательская деятельность в технологии современного урока математики и внеклассных занятий Учитель математики МКОУ ООШ 12 Ермакова В.Ю.
«Если человек в школе не научится творить, то и в жизни он будет только подражать и копировать» Л.Н.Толстой
Актуальность темы
Герберт Спенсер
Урок 1 Учитель Делает запись на доске: = = 21 -Вижу вы удивлены. Почему? -Значит над каким вопросом подумаем? -Давайте рассуждать. Если отличаются правые части… -Чем отличаются левые части, какие есть идеи? -Какой порядок действий в первом примере? Ученики Реакция удивления -Примеры одинаковые, а ответы разные. -Почему в одинаковых примерах получились разные ответы? -То отличаются и левые -Левые отличаются порядком действий -Сначала умножение, затем сложение
- Во втором? -В каком примере мы действовали по правилу? -А во втором примере мы нарушили правило! Как же нам догадаться, что здесь сложение выполняется первым? -Молодцы! Есть такой знак! (дописывает скобки во второй пример). Он называется скобки. -Так что же означают скобки? -Это определение дома выучить наизусть, по желанию придумать стишок про скобки. Сложение, затем умножение -В первом! -Надо что – то в пример дописать! Нужен какой-то знак, чтобы обозначить сложение! - Скобки обозначают действие, которое выполняется в первую очередь!
Урок 2 Учитель: Дети! У нас сегодня новая тема: «Скобки». Вот это знак (…..) скобки, они обозначают действие, которое выполняется в первую очередь. Посмотрите на пример (2+5) 3 = 21. Понятно? Дома выучите наизусть правило про скобки.
Развивающие и воспитательные цели урока Развивающие цели ориентированы на познавательную сферу ученика и включают развитие внимания, восприятия, памяти, мышления, речи, способностей. Воспитательные цели связаны с формированием личности ученика, потребностей и мотивов, ценностей, нравственных установок, норм поведения и черт характера.
Звенья научно - исследовательской деятельности 1 звено – постановка проблемы 2 звено – поиск решения 3 звено – выражение решения 4 звено – реализация продукта
Приёмы создания проблемной ситуации Тип проблемной ситуации Тип противоречияПриёмы С удивлением Между двумя или более положениями 1. Одновременно предъявить противоречивые факты 2. Столкнуть разные мнения учеников вопросом или практическим заданием Между житейским представлением и научным фактом 3. Обнажить житейское представление учащихся заданием на «ошибку» и предъявить научный факт сообщением, экспериментом или наглядностью С затруднениемМежду необходимостью и невозможностью выполнить задание учителя 4.Дать практическое задание, не выполнимое вообще 5.Дать практическое задание, не сходное с предыдущим 6. Дать невыполнимое задание, сходное с предыдущим.
Проблемная ситуация с затруднением Урок геометрии в 7 классе по теме «Сумма углов треугольника» Ученикам предлагается построить треугольник с углами 90, 120, и 60 градусов (практическое задание невыполнимо вообще). Попытавшись его выполнить, учащиеся оказываются в затруднении (возникает проблемная ситуация).
Формулировка учебной проблемы через побуждающий диалог 1 вариант Заострение противоречия – формирование проблемы «Какова же будет тема урока?» 2 вариант Осознание противоречия – формирование проблемы «Какой вопрос у вас возникает?»
Как искать решение учебной проблемы Побуждающий к гипотезам диалог СтруктураПобуждениеПобуждение к устной проверке Побуждение к практической проверке Общее побуждение Какие есть гипотезы? к аргументу Согласны? Почему? к плану проверки: как проверить? ПодсказкаК решающей гипотезе к аргументук плану проверки СообщениеРешающей гипотезы аргументаплана проверки
Продолжение урока «Сумма углов треугольника» Учитель (использует побуждающий диалог) -Проведём исследование -Начертите треугольник -Замерьте углы транспортиром -Найдите сумму углов -Чему же равна сумма углов треугольника? -Значит, почему вы не смогли построить первый треугольник? Ученики (формулируют вопрос: почему не строится треугольник?) - Чертят треугольник -Замеряют углы - Находят сумму углов - Она равна 180 ° - Потому что сумма углов не была равна 180 °
Классификация методов введения знаний Постановка учебной проблемы Побуждаю щий от проблем- ной ситуации диалог Подводя- щий к теме диалог Сообщение темы с мотивирую щим приёмом Сообщение темы Поиск решения Побужда- ющий к гипотезам диалог Подводя- щий диалог от проблемы Подводя- щий диалог без проблемы Сообщение знания МетодыПроблемныеТрадицион ные
Работа кипит…
Мониторинг отношения детей к изучаемому предмету в 8 «А» классе
Показатели успеваемости и качества знаний по математике за три года у.г у.г. 2 полугодие у.г.
Чурилова Дарья – призёр областного научного конкурса «Интеллектуал» ( 2011 г )
«Самое главное в жизни – это собственный опыт» В. Скотт